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Why/When/How Does Pretraining Work?

I. The Role of Self-supervised Losses: What Structares of Data
Do They Learn?

2. The Roles of Implicit Bias of Optimizers



Isolating the Role of Losses, with Sutficient (Polynomial} Data

> Assume sufficient pretraining and downstream data (> the complexity
of the model class)
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1ali Infinite Data

Isolating the Role of Losses, with Sutficie

> Might just as well assume infinite data
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tali Infinite Data

Isolating the Role of Losses, with Sutficie

> Might just as well assume infinite data

Question:

> Why does 0 give population

_ pretrain loss
representations that are

linearly separable on
downstream tasks? ‘
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The Role of Contrastive Loss
Principles of contrastive loss:

> Pull representations of augmentations of the same image closer

> Push representations of augmentations of diff images further

I
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Various implementations: SImCLR [Chen et al’19], MoCo [He et al.”19], BYOL
[Grill et al’20], SimSiam [Chen et al./20], SwAV [Caron et al.’20]



Spectral Clustering on
an Infinite Graph

Contrastive Learning



Population Positive-Pair Graph

> Vertex set: all images patches

> Edges: connect two patches if they can share an original image (i.e. they
are positive pairs)

> Positive-pair graph is very sparse
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Clustering Structures: Sub-clusters with Good Intra-connectivity

> Very few edges between different underlying classes

> Connectivity/expansions within the same classes or sub-classes
> Two bulldogs can be connected via a sequence of bulldogs

> Graph distance is semantically meaningful
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Main Results:
Contrastive Learning =~ Spectral Clustering on Positive-Pair Graph

Theorem (informally stated):

With infinite data, minimizing the spectral contrastive loss is equivalent
to spectral clustering on the positive-pair graph (up to rotations).

> We analyze the spectral contrastive loss (that also works empirically)

2

min L(f) = 2B, o+ f(2) " f(21) + By (f(2)T f(2))

f ) N\
positive pair random pair
(aug. of same image)  (aug. of random pairs of images)



What Downstream Tasks Can Be Solved Linearly?

Theorem (informally stated):

Suppose the positive-pair graph contains r major clusters, and
representation dimension k = 2r.

Then, linear classification on representations can solve any
downstream task s.t. each cluster has the same label.

> relationship between task
labels and structures of
pretraining data

> A new but simple proof, using spectral graph theory tools

> Past works on spectral clustering don’t analyze linear separability of the
embeddings



Follow-up Work: Direction in Embedding Space Riso Captare Relationship
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Follow-up Work: Direction in Embedding Space Riso Captare Relationship
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» Pretraining features + finetuning on source gives SOTA performance for
unsupervised domain adaptation

[HaoChen-Wei-Kumar-M."2022, Shen-Jones-Kumar-Xie-HaoChen-M.-Liang.22]



Why/When/How Does Pretraining Work?

I. The Role of Self-supervised Losses: What Structares of Data
Do They Learn?

2. The Roles of Implicit Bias of Optimizers



> Previous slides and prior works: good pre-training loss => good

downstream performance [Saunshi et al.’20, Wei et al’21, Xie et al.21,
Haochen et al./21]

» Common practice: use validation pre-training loss as an indicator for
downstream performance

Is Pre-training Loss Always Correlated with Downstream Perf?

> Some counter-exapmles: 3 models with different architectures, the same

pre-training loss, and different downstream performances [Tay et al./21,
Zhang et al/22, Saunshi et al./22]

> A deep and narrow transformer > a wide and shallow one [Tay et al/21]
> AlBert > Bert, on a synthetic reasoning task [zhang et al.22]



Q.: can two models with the same architecture and the same pre-
training loss still have different downstream perf?

> Spoiler: yes!
> There is an implicit bias from the optimizers/algorithms

> Understanding SSL require studying the roles of

> self-supervised losses [Arora et al’19, Lee et al./20, Tosh et al.20,21, Haochen et
al’21,22 ...

> inductive bias of the architectures [Haochen et al’22]
> implicit bias of the optimizers: the rest of this talk [Liu et al/22]



Is Pre-training Loss Always Correlated with Downstream Perf (Cont'd)?

> A priori, many models of the same architecture can have the same pre-
training loss.

> Why should they have the same downstream performance?

> Our findings: indeed, 3 models with the same pre-training loss and
architecture but different downstream perf.

> especially when the pre-training loss is near optimal



Experimental Setup

» Pre-training with MLM

> Simplified datasets from generative models
> benefit: can compute the true MLM conditional prob.

> Downstream evaluation: fine-tuning and linear probe

> Saturation regime: ensure the pre-training loss is almost the same.
> prediction = true conditional prob.

> pre-training loss = entropy of true conditional prob.



Experimental Setup (Contd)

> Different factors in pre-training
> # of steps after the pre-training loss converges
> Training algorithms
= “Natural” algorithms: AdamW, and SGD

= Adversarial algorithms: add an objective to mess up downstream
performance without changing the pre-training loss

= Look-up table: a hypothetical model encoded in large transformers
= memorizes all the inputs sequences
= outputs the ground truth conditional prob. as features
> Model sizes: transformers with sizes from 4M to 950M

> Note (again): in all experiments, the pre-training loss are the same



Varying # of Pre-training Steps:
Pre-training Loss Plateaus, But Downstream Perf Improves

PCFG, Task C, 41M OPT, QNLI, 235M
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Changing the Rlgorithms:
Good pre-training loss => Good downstream performance

Different pre-training algorithms on PCFG

Algorithm Pre-training Task A Acc% Task B Acc %
Loss

AdamW 3.204 89.9 49.2

Adversarial 3.206 83.1 42.3

Lookup table  3.196 11.2 39.7

> Adversarial algorithms indeed mess up the downstream perf. while
keeping pre-training loss the same

> Lookup table has perfect pre-training loss but worst downstream perf.

= Representations of transformers are better than the true
conditional probability.



Varying the Model-size:
Large Models Is Better Than Smaller Ones
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» Caveat: should transformers with different sizes be considered as the same
arch.?



The Existence of Implicit Bias in Language Modeling

>V There exists implicit bias in MLM.

> Only training algorithms are different => they break ties among
global minimizers differently

> ? What's the role of implicit bias in MLM?
> Theorem: In the saturation regime, SGD finds the flattest minimizer



The Relationship between Downstream Perf and Flatness

> v There exists implicit bias in language model pre-training.
> v Implicit bias leads to flatter models.

> ? |s downstream perf correlated with flatness?
> We will evaluate the flatness of the models in the previous settings



Flatter Models Have Better Downstream Performance

Models at different pre-training time steps

PCFG, SGD, 235M

HMM, SGD, 67M
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The Relationship between Downstream Perf and Flatness

> v There exists implicit bias in language model pre-training.
> v Implicit bias leads to flatter models.

> v Downstream perf is correlated with flatness?
> The paper also has some theory that explains this on toy language



Summary

Role of contrastive loss: spectral clustering on the positive-pair graph
Role of the optimizers:
> prefer flatter local minima

> flatness correlates with downstream perf (when the pretraining losses
are the same)

Open questions
> The theory for implicit bias only works for SGD; how about AdamW?

> Theoretical results for “flatter models = better transferability”



