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Why/When/How



Ø Assume sufficient pretraining and downstream data (≫ the complexity 
of the model class) 
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Infinite

Ø Might just as well assume infinite data
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Infinite

Question:

Ø Why does !" give
representations that are
linearly separable on
downstream tasks?

Ø Might just as well assume infinite data
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Principles of contrastive loss: 

Ø Pull representations of augmentations of the same image closer

Ø Push representations of augmentations of diff images further

augmentation

Various implementations: SimCLR [Chen et al’19], MoCo [He et al.’19], BYOL 
[Grill et al.’20], SimSiam [Chen et al.’20],  SwAV [Caron et al.’20]





Population

Class: catClass: dog
Brittany
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Birmannatural 
image
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image

Ø Vertex set: all images patches 
Ø Edges: connect two patches if they can share an original image (i.e. they 

are positive pairs)
Ø Positive-pair graph is very sparse  
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Clustering Structures: Sub-clusters with Good Intra-connectivity

Ø Very few edges between different underlying classes 
Ø Connectivity/expansions within the same classes or sub-classes 

Ø Two bulldogs can be connected via a sequence of bulldogs
Ø Graph distance is semantically meaningful

large distance



Theorem (informally stated): 

With infinite data, minimizing the spectral contrastive loss is equivalent
to spectral clustering on the positive-pair graph (up to rotations). 

Ø We analyze the spectral contrastive loss (that also works empirically)

positive pair            
(aug. of same image)

min
f
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random pair                                 
(aug. of random pairs of images)



Linearly?

Theorem (informally stated): 

Suppose the positive-pair graph contains ! major clusters, and 
representation dimension " ≥ 2!.
Then, linear classification on representations can solve any 
downstream task s.t. each cluster has the same label.  

Ø A new but simple proof, using spectral graph theory tools
Ø Past works on spectral clustering don’t analyze linear separability of the 

embeddings

Ø relationship between task
labels and structures of
pretraining data



# ≫ # linear separability
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transfer

class

[HaoChen-Wei-Kumar-M.’2022, Shen-Jones-Kumar-Xie-HaoChen-M.-Liang.’22]

linear transferability# ≫ #

Ø Pretraining features + finetuning on source gives SOTA performance for 
unsupervised domain adaptation



Why/When/How



Ø Previous slides and prior works: good pre-training loss => good 
downstream performance [Saunshi et al.’20, Wei et al.’21, Xie et al.’21, 
Haochen et al.’21]

Ø Common practice: use validation pre-training loss as an indicator for 
downstream performance

Ø Some counter-exapmles: ∃ models with different architectures, the same
pre-training loss, and different downstream performances [Tay et al.’21, 
Zhang et al.’22, Saunshi et al.’22]

Ø A deep and narrow transformer > a wide and shallow one [Tay et al.’21] 

Ø AlBert > Bert, on a synthetic reasoning task [Zhang et al.’22]



Q.: can two models with the same architecture and the same pre-
training loss still have different downstream perf?

Ø Spoiler: yes! 
Ø There is an implicit bias from the optimizers/algorithms

Ø Understanding SSL require studying the roles of 
Ø self-supervised losses [Arora et al.’19, Lee et al.’20, Tosh et al.20,21, Haochen et 

al.’21, 22 … ]
Ø inductive bias of the architectures [Haochen et al.’22]
Ø implicit bias of the optimizers: the rest of this talk [Liu et al.’22]



Ø A priori, many models of the same architecture can have the same pre-
training loss. 
Ø Why should they have the same downstream performance?

Ø Our findings: indeed, ∃models with the same pre-training loss and 
architecture but different downstream perf.
Ø especially when the pre-training loss is near optimal



Ø Pre-training with MLM
Ø Simplified datasets from generative models

Ø benefit: can compute the true MLM conditional prob.

Ø Downstream evaluation: fine-tuning and linear probe
Ø Saturation regime: ensure the pre-training loss is almost the same. 

Ø prediction = true conditional prob.
Ø pre-training loss = entropy of true conditional prob.



Ø Different factors in pre-training
Ø # of steps after the pre-training loss converges
Ø Training algorithms

§ “Natural” algorithms: AdamW, and SGD
§ Adversarial algorithms: add an objective to mess up downstream 

performance without changing the pre-training loss
§ Look-up table: a hypothetical model encoded in large transformers

§ memorizes all the inputs sequences 
§ outputs the ground truth conditional prob. as features

Ø Model sizes: transformers with sizes from 4M to 950M

Ø Note (again): in all experiments, the pre-training loss are the same





≠> 

Ø Adversarial algorithms indeed mess up the downstream perf. while 
keeping pre-training loss the same

Ø Lookup table has perfect pre-training loss but worst downstream perf.
§ Representations of transformers are better than the true 

conditional probability.

Algorithm Pre-training 
Loss

Task A Acc % Task B Acc %

AdamW 3.204 89.9 49.2

Adversarial 3.206 83.1 42.3

Lookup table 3.196 71.2 39.7

Different pre-training algorithms on PCFG



Ø Caveat: should transformers with different sizes be considered as the same 
arch.? 



Ø✓ There exists implicit bias in MLM. 
Ø Only training algorithms are different => they break ties among

global minimizers differently

Ø ? What’s the role of implicit bias in MLM?
Ø Theorem: In the saturation regime, SGD finds the flattest minimizer



Ø✓ There exists implicit bias in language model pre-training. 
Ø✓ Implicit bias leads to flatter models.
Ø ? Is downstream perf correlated with flatness?

Ø We will evaluate the flatness of the models in the previous settings



Algorithm Pre-training 
Loss

Task A 
Acc %

Task B 
Acc %

Task C 
Acc %

Trace of 
Hessian

AdamW 3.204 89.9 49.2 55.7 8.01

Adversarial 3.206 83.1 42.3 50.2 19.34

Different pre-training algorithms on PCFG

Models at different pre-training time steps



Ø✓ There exists implicit bias in language model pre-training. 
Ø✓ Implicit bias leads to flatter models.
Ø✓ Downstream perf is correlated with flatness?

Ø The paper also has some theory that explains this on toy language



Role of contrastive loss: spectral clustering on the positive-pair graph
Role of the optimizers:
Ø prefer flatter local minima
Ø flatness correlates with downstream perf (when the pretraining losses 

are the same)

Open questions
Ø The theory for implicit bias only works for SGD; how about AdamW?
Ø Theoretical results for “flatter models ⇒ better transferability”


