Toward Understanding Self-Supervised Learning: The Roles of Losses and Optimizers

Tengyu Ma (Stanford)

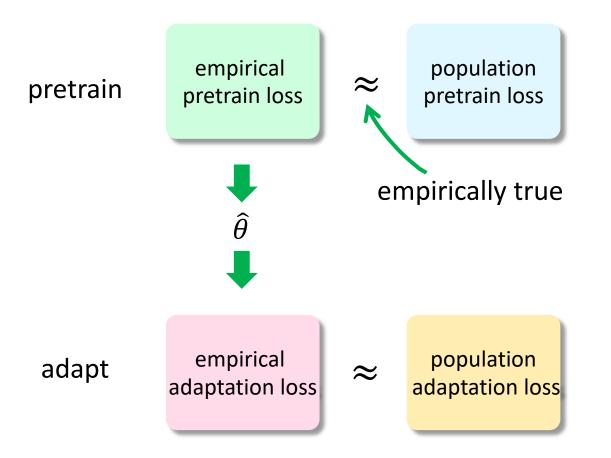
Why/When/How Does Pretraining Work?

1. The Role of Self-supervised Losses: What Structures of Data Do They Learn?

2. The Roles of Implicit Bias of Optimizers

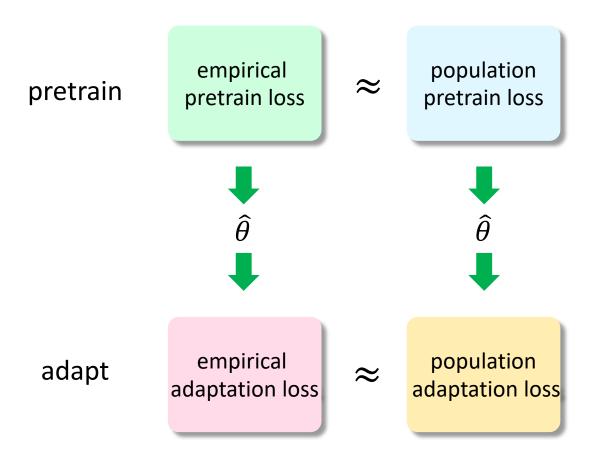
Isolating the Role of Losses, with Sufficient (Polynomial) Data

Assume sufficient pretraining and downstream data (>> the complexity of the model class)



Isolating the Role of Losses, with Sufficient (Polynomial) Infinite Data

Might just as well assume infinite data

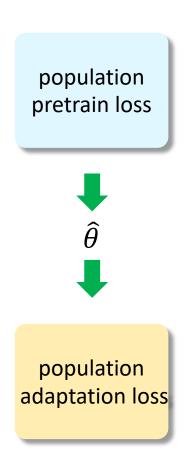


Isolating the Role of Losses, with Sufficient (Polynomial) Infinite Data

Might just as well assume infinite data

Question:

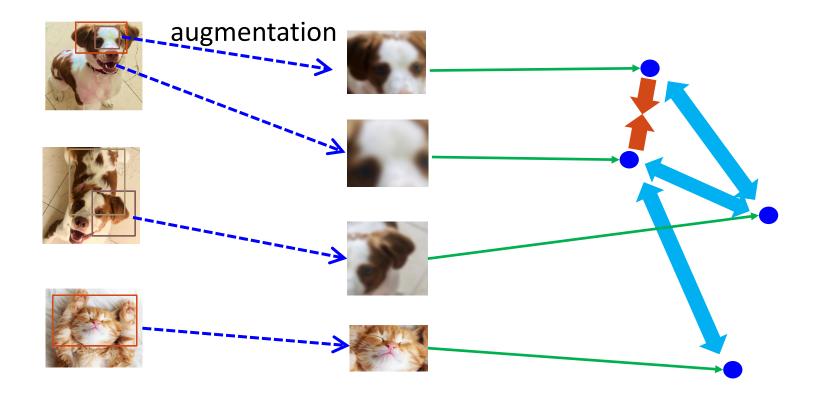
Why does θ̂ give
 representations that are
 linearly separable on
 downstream tasks?



The Role of Contrastive Loss

Principles of contrastive loss:

- Pull representations of augmentations of the same image closer
- Push representations of augmentations of diff images further

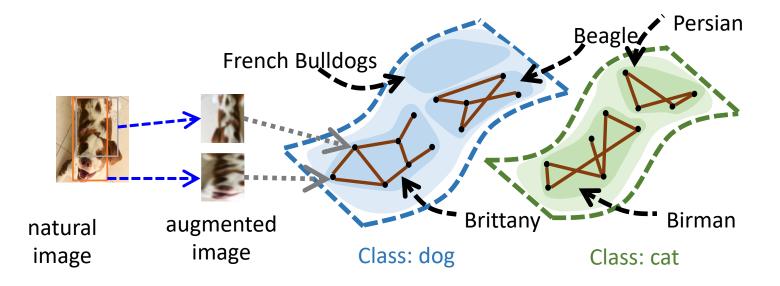


Various implementations: SimCLR [Chen et al'19], MoCo [He et al.'19], BYOL [Grill et al.'20], SimSiam [Chen et al.'20], SwAV [Caron et al.'20]

Contrastive Learning = Spectral Clustering on an Infinite Graph

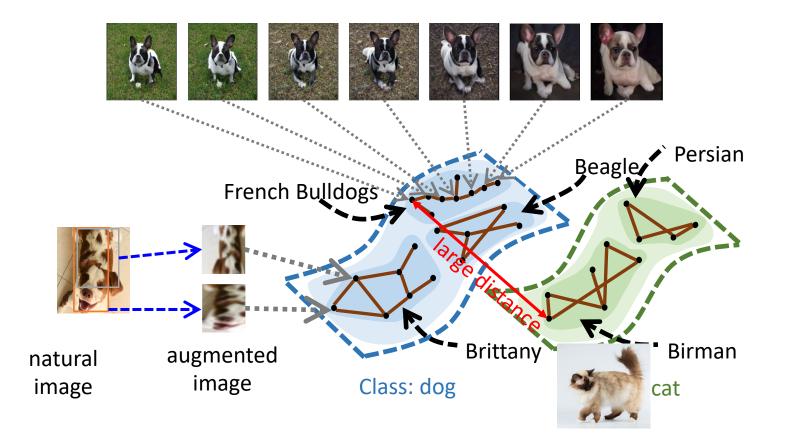
Population Positive-Pair Graph

- Vertex set: all images patches
- Edges: connect two patches if they can share an original image (i.e. they are positive pairs)
- Positive-pair graph is very sparse



Clustering Structures: Sub-clusters with Good Intra-connectivity

- Very few edges between different underlying classes
- Connectivity/expansions within the same classes or sub-classes
 - Two bulldogs can be connected via a sequence of bulldogs
- Graph distance is semantically meaningful



Main Results: Contrastive Learning \approx Spectral Clustering on Positive-Pair Graph

Theorem (informally stated):

With infinite data, minimizing the spectral contrastive loss is equivalent to spectral clustering on the positive-pair graph (up to rotations).

> We analyze the spectral contrastive loss (that also works empirically)

$$\min_{f} L(f) = -2\mathbb{E}_{x,x^{+}} f(x)^{\top} f(x^{+}) + \mathbb{E}_{x,x'} \left(f(x)^{\top} f(x') \right)^{2}$$
positive pair
(aug. of same image)
(aug. of random pairs of images)

What Downstream Tasks Can Be Solved Linearly?

Theorem (informally stated):

Suppose the positive-pair graph contains r major clusters, and representation dimension $k \ge 2r$.

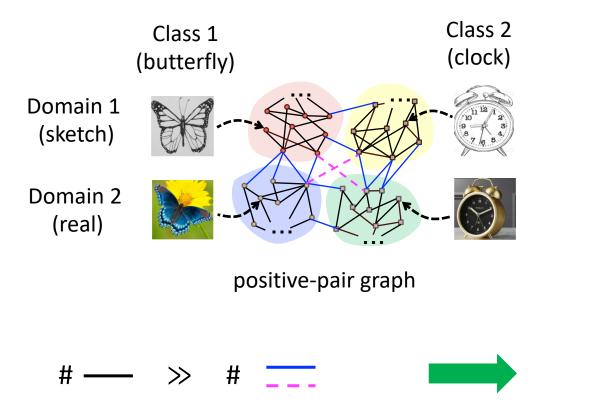
Then, linear classification on representations can solve any downstream task s.t. each cluster has the same label.

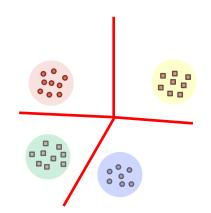
 relationship between task labels and structures of pretraining data

> A new but simple proof, using spectral graph theory tools

Past works on spectral clustering don't analyze linear separability of the embeddings

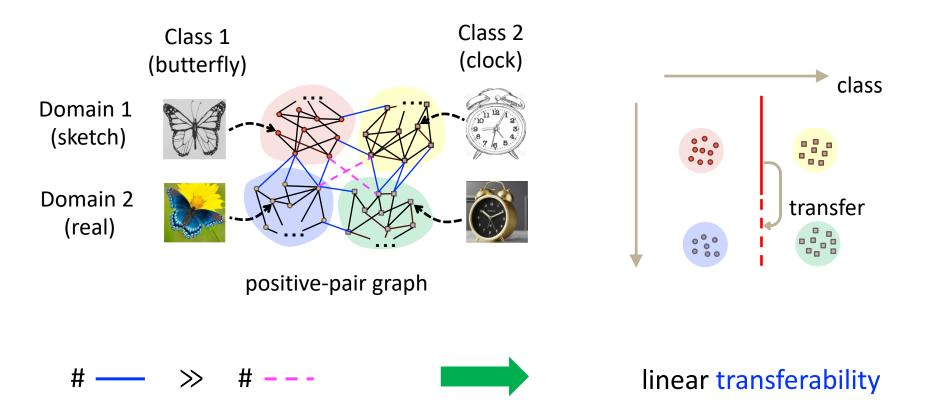
Follow-up Work: Direction in Embedding Space Also Capture Relationship





linear separability

Follow-up Work: Direction in Embedding Space Also Capture Relationship



Pretraining features + finetuning on source gives SOTA performance for unsupervised domain adaptation

[HaoChen-Wei-Kumar-M.'2022, Shen-Jones-Kumar-Xie-HaoChen-M.-Liang.'22]

Why/When/How Does Pretraining Work?

1. The Role of Self-supervised Losses: What Structures of Data Do They Learn?

2. The Roles of Implicit Bias of Optimizers

- Previous slides and prior works: good pre-training loss => good downstream performance [Saunshi et al.'20, Wei et al.'21, Xie et al.'21, Haochen et al.'21]
- Common practice: use validation pre-training loss as an indicator for downstream performance

Is Pre-training Loss Always Correlated with Downstream Perf?

- Some counter-exapmles: ∃ models with different architectures, the same pre-training loss, and different downstream performances [Tay et al.'21, Zhang et al.'22, Saunshi et al.'22]
 - > A deep and narrow transformer > a wide and shallow one [Tay et al.'21]
 - > AlBert > Bert, on a synthetic reasoning task [Zhang et al.'22]

Q.: can two models with the same architecture and the same pretraining loss still have different downstream perf?

- Spoiler: yes!
 - There is an implicit bias from the optimizers/algorithms
- Understanding SSL require studying the roles of
 - self-supervised losses [Arora et al.'19, Lee et al.'20, Tosh et al.20,21, Haochen et al.'21, 22 ...]
 - inductive bias of the architectures [Haochen et al.'22]
 - implicit bias of the optimizers: the rest of this talk [Liu et al.'22]

Is Pre-training Loss Always Correlated with Downstream Perf (Cont'd)?

- A priori, many models of the same architecture can have the same pretraining loss.
 - > Why should they have the same downstream performance?
- ➤ Our findings: indeed, ∃ models with the same pre-training loss and architecture but different downstream perf.
 - especially when the pre-training loss is near optimal

Experimental Setup

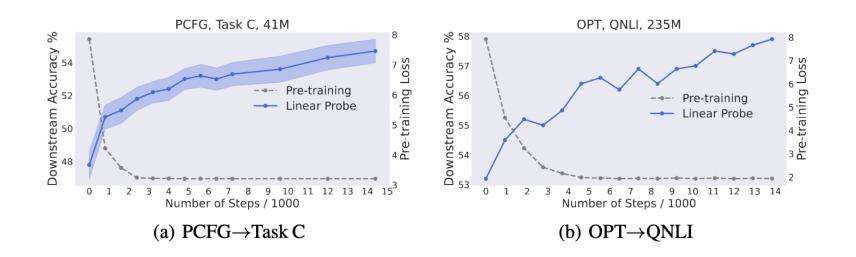
- Pre-training with MLM
- Simplified datasets from generative models
 - benefit: can compute the true MLM conditional prob.
- Downstream evaluation: fine-tuning and linear probe
- > Saturation regime: ensure the pre-training loss is almost the same.
 - prediction = true conditional prob.
 - pre-training loss = entropy of true conditional prob.

Experimental Setup (Cont'd)

Different factors in pre-training

- # of steps after the pre-training loss converges
- Training algorithms
 - "Natural" algorithms: AdamW, and SGD
 - Adversarial algorithms: add an objective to mess up downstream performance without changing the pre-training loss
 - Look-up table: a hypothetical model encoded in large transformers
 - memorizes all the inputs sequences
 - outputs the ground truth conditional prob. as features
- Model sizes: transformers with sizes from 4M to 950M
- > Note (again): in all experiments, the pre-training loss are the same

Varying # of Pre-training Steps: Pre-training Loss Plateaus, But Downstream Perf Improves



Changing the Algorithms: Good pre-training loss $\neq >$ Good downstream performance

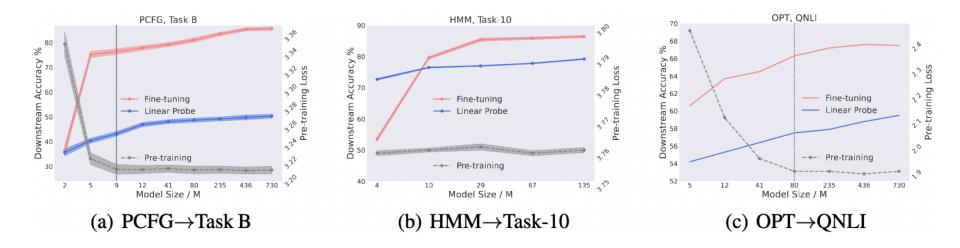
Different pre-training algorithms on PCFG

Algorithm	Pre-training Loss	Task A Acc %	Task B Acc %
AdamW	3.204	89.9	49.2
Adversarial	3.206	83.1	42.3
Lookup table	3.196	71.2	39.7

Adversarial algorithms indeed mess up the downstream perf. while keeping pre-training loss the same

- Lookup table has perfect pre-training loss but worst downstream perf.
 - Representations of transformers are better than the true conditional probability.

Varying the Model-size: Large Models Is Better Than Smaller Ones



Caveat: should transformers with different sizes be considered as the same arch.?

The Existence of Implicit Bias in Language Modeling

 \succ \checkmark There exists implicit bias in MLM.

Only training algorithms are different => they break ties among global minimizers differently

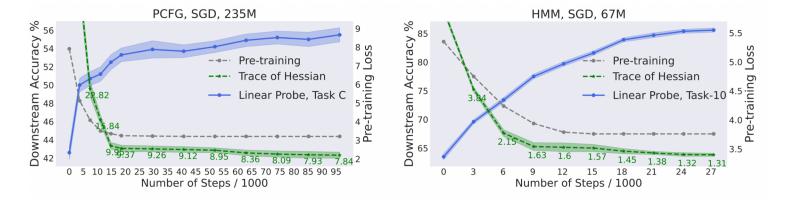
? What's the role of implicit bias in MLM?

Theorem: In the saturation regime, SGD finds the flattest minimizer

The Relationship between Downstream Perf and Flatness

- ✓ There exists implicit bias in language model pre-training.
- $\succ \checkmark$ Implicit bias leads to flatter models.
- Is downstream perf correlated with flatness?
 - We will evaluate the flatness of the models in the previous settings

Flatter Models Have Better Downstream Performance



Models at different pre-training time steps

Different pre-training algorithms on PCFG

Algorithm	Pre-training Loss	Task A Acc %	Task B Acc %	Task C Acc %	Trace of Hessian
AdamW	3.204	89.9	49.2	55.7	8.01
Adversarial	3.206	83.1	42.3	50.2	19.34

The Relationship between Downstream Perf and Flatness

- ➤ ✓ There exists implicit bias in language model pre-training.
- \succ \checkmark Implicit bias leads to flatter models.
- ✓ Downstream perf is correlated with flatness?
 - > The paper also has some theory that explains this on toy language

Summary

Role of contrastive loss: spectral clustering on the positive-pair graph Role of the optimizers:

- prefer flatter local minima
- Flatness correlates with downstream perf (when the pretraining losses are the same)

Open questions

- > The theory for implicit bias only works for SGD; how about AdamW?
- > Theoretical results for "flatter models \Rightarrow better transferability"