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What is the state of SoTA in V&L?

Vision and Language (V&L) models
Multimodal Transformers
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There are mountains in the image. E
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VCR

Is this a mountain?

Yes.
Because it is taller than

N N the horizon.

VQA

Is this a mountain? Yes.
How many mountains? Two.

al”

Image Rcrieval

Phrase Grounding

Where are mountains’




Task-centrism in the V&L community

task A, task B, ..., task Z.
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Phenomenon-centrism

Let's VALSE! .'
Z N

‘."

18



. Heidelberg ((//
UNIVERSITAT Natural Language Processin []
HEIDELBERG guag 9 |
ZUKUNFT Group

SEIT 1386

VALSE ¢3

A Task-Independent Benchmark for Vision and Language Models
Centered on Linguistic Phenomena

Letitia Parcalabescu Michele Cafagna Lilitta Muradjan
Computational Linguistics Institute of Linguistics and Language Computational Linguistics
Department Technology Department
Heidelberg University University of Malta Heidelberg University
Anette Frank lacer Calixto Albert Gatt
Computational Linguistics New York University Institute of Linguistics and
Department ILLC, University of Language Technology

Heidelberg University Amsterdam University of Malta

x(X x



Phenomenon-centrism

VALSE: a FOIL concerto of 6 pieces

Plurality Counting
The greenhouse has . The man wears pair of glasses.
The greenhouse has ) The man wears pairs of glasses.
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Relations
Existence There is a sink the man.
in the image. There is a sink the man.

There is ~~ man in the image.

Coreference Actions
The apron looks clean. Is it white? No. The man the plants.
The apron looks clean. Is it white? = . The man the plants.
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Phenomenon-centrism

VALSE: a FOIL concerto of 6 pieces

FOIL it! Find One mismatch between Image and Language caption

Counting
Ravi Shekhar, Sandro Pezzelle, Yauhen Klimovich, he man wears pa ir of g[a sSses.
Aurélie Herbelot, Moin Nabi, Enver Sangineto, Raffaella Bernardi .
| University of Trento e man wears pairs of glasses.
{firstname.lastname}@unitn. i
Abstract e i : : _ Relations
In this paper, we aim to understand 1Nl : . : P Th ere iS a Sink the man

whether current language and vision A _ T >
{(LaVi) models truly grasp the interac- j o o1 =\ . .

tion between the two modalities. To this ! - LV 2 N Th ereis a si nk th € man.
end, we propose an extension of the MS-

COCO dataset, FOIL-COCO, which asso-

ciates images with both correct and *“foil’

captions, that is, descriptions of the im-

age that are highly similar to the original Figure 1: Is the caption correct or foil (T1)? If it

ones, but contain one single mistake (*foil is foil, where is the mistake (T2) and which is the

word'). We show that current LaVi mod- word to correct the foil one (T3)?

els fall into the traps of this data and per- ctions

form badly on three tasks: a) caption clas-
sification (correct vs. foil); b) foil word
detection; ¢) foil word correction. Hu-

models are actually learning. There is an emerg-
ing feeling in the community that the VQA task
should be revisited, especially as many current

the plants.

mans, in contrast, have near-perfect per-
formance on those tasks. We demonstrate dataset can be handled by “blind’ models which
that merely utilising language cues is not use language input only, or by simple concate- 18
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the plants.
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Seeing past words: Testing the cross-modal capabilities of

pretrained V&L mode

Letitia Parcalabescu! Albert Gatt?

Is on counting tasks

Anette Frank' Tacer Calixto®*

'Heidelberg University, Department of Computational Linguistics
“University of Malta, Institute of Linguistics and Language Technology
*New York University “‘ILLC, University of Amsterdam
{parcalabescu, frank}@cl.uni-heidelberg.de

albert.gatt@um.edu.mt,

Abstract

We investigate the reasoning ability of pre-
trained vision and language (V&L) models in
two tasks that require multimodal integration:
(1) discriminating a correct image-sentence
pair from an incorrect one, and (2) counting
entities in an image. We evaluate three pre-
trained V&L models on these tasks: VILBERT,
ViLBERT 12-in-1 and LXMERT, in zero-shot

and finetuned settings. Our results show that
word o Colrecy e 1o One Y apr

ctions

models are actually learning. There is an emerg-
ing feeling in the community that the VQA task
should be revisited, especially as many current
dataset can be handled by ‘blind® models which
use language input only, or by simple concate-
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iacer.calixto@nyu.edu

tasks, e.g. visual question answering (VQA); vi-
sual commonsense reasoning; grounding referring
expressions; and image retrieval, among others.
Pretrained V&L models use a combination of
masked multimodal modelling - i.e., masking out
words and object bounding boxes from the input
and predicting them — and image-sentence align-
ment, i.e., predicting whether an image-sentence
pair is correctly aligned or not. Such models hold
the promise of partially addressing the ‘meaning

the plants.

the plants.




VALSE: a FOIL concerto of 6 pieces

Plurality Counting
The greenhouse has . The man wears pair of glasses.
The greenhouse has ) The man wears pairs of glasses.
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Relations
Existence There is a sink the man.
in the image. There is a sink the man.

There is ~~ man in the image.

Coreference Actions
The apron looks clean. Is it white? No. The man the plants.
The apron looks clean. Is it white? = . The man the plants.
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VALSE: a FOIL concerto of 6 pieces

Plurality Counting
The greenhouse has . The man wears pair of glasses.
The greenhouse has ) The man wears pairs of glasses.

Relations
Existence There is a sink the man.
in the image. There is a sink the man.

There is ~~ man in the image.

Coreference Actions
The apron looks clean. Is it white? No. The man the plants.
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How to obtain valid foils?

« Language models for generating foil words (e.g., SpanBERT)
 Natural Language Inference (NLI)
 Human annotation
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Natural Language Inference filtering

neutral / contradiction

Premise Hypothesis
Caption Foil l ‘

The greenhouse has : The greenhouse has

Hypothesis

entailmen*/

1
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Natural Language Inference filtering

neutral / contradiction

Premise Hypothesis
Caption Foil
The greenhouse has : The greenhouse has
The greenhouse has : The greenhouse has
entailment
Hypothesis

A

entailment/
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Natural Language Inference filtering

neutral / contradiction

Premise Hypothesis
Caption Foil l ‘
The greenhouse has : The greenhouse has
Hypothesis

1

entailmen*/
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How to obtain valid foils?

« Language models for generating foil words (e.g., SpanBERT)
 Natural Language Inference (NLI)
 Human annotation
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Example data

image

pieces  existence plurality counting relations actions coreference
S .
= instruments existential  semantic number balanced, adver-  prepositions replacement, standard, clean
E quantifiers sarial, small numbers actant swap
“E‘ #examples' 505 851 2,459 535 1,633 812
<3 foil  nothing <+ NP  replacement numeral re- SpanBERT pre- action replace- yes <+ no
_5 generation  something (sg2pl;pl2sg) & placement diction ment, actant
§ method quantifier insertion swap
E MLM X X X v v/ X
= GRUEN X v X v X X
E NLI X v X v X X
src. dataset  Visual7W MSCOCO Visual7W MSCOCO SWiG VisDial v1.0
image src.  MSCOCO  MSCOCO MSCOCO MSCOCO SituNet MSCOCO
caption There are A small copper vase There are four/six ze- A cat plays with A man/woman  Buffalos walk
(blue) / foil  no animals  with some flowers /  bras. a pocket knife on  shouts at a along  grass.
(orange) / animals exactly one flower in / underneath a  woman /man. Are they in a
shown. it. table. zoo? No / Yes.










Foil
The greenhouse has

Caption
The greenhouse has

. S

image-sentence alignment score Z l‘ image-sentence alignment score

<
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VALSE pairwise accuracy
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unimodal!
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VALSE: a FOIL concerto of 6 pieces

Plurality Counting
The greenhouse has . The man wears pair of glasses.
The greenhouse has ) The man wears pairs of glasses.

P 4

Relations
Existence There is a sink the man.
in the image. There is a sink the man.

There is ~~ man in the image.

Coreference Actions
The apron looks clean. Is it white? No. The man the plants.
The apron looks clean. Is it white? = . The man the plants.
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