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The Era of Foundation Models

A foundation model can centralize the
information from all the data from various
modalities.

This one model can then be adapted to
a wide range of downstream tasks.

Existing Foundation Models:
- GPT-3

- CLIP

- Florence

- Flamingo

- CoCa

- PaLl
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R. Bommasani et. al., On the Opportunities and Risks
of Foundation Models, CRFM Stanford, 2021



A Glimpse of Diverse Computer Vision Tasks

Image Classification
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Pose Estimation

Image Retrieval

Object Detection

Spatial stream ConvNet
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Image Credit: Stanford CS231n: Deep Learning for Computer Vision
Krizhevsky, Sutskever, and Hinton, 2012; Ren, He, Girshick, and Sun 2015; Fabaret et al, 2012; Simonyan et al, 2014; Toshev and Szegedy, 2014
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Before Florence: High cost & slow deployment
Each service is trained disjointly
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After Florence: Low cost & fast deployment
Unified vision services
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Florence: A New Foundation Model for Computer Vision

Florence unified space, time and modalities in
computer vision under one pre-training +
adapter framework Multi-sense
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Florence: A New Foundation Model for Computer Vision. (arXiv 2111.11432. Florence v1.0 released on 11/5/2021)



Vision Encoder: Hierarchical Transformer
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Dual attention Vision Transformer: Enjoy the efficiency of local
attention, meanwhile have the ability of global interaction.
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(b) Channel Group Self-attention

Model* ImageNet-1k
Swin-T 81.3
CoSwin-T 81.7
DaViT-T 82.8

*Models trained on ImageNet-1k

[1] Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. (ICCV 2021)
[2] Florence: A New Foundation Model for Computer Vision. (arXiv 2111.11432)
[3] DaViT: Dual Attention Vision Transformers. (ECCV 2022)



Unified Contrastive Learning in Image-Text-Label Space (UniCL)

Language-Image
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* UniCL (Florence)

Best of both world:

Discriminative visual representations and Broad
semantic coverage

Unified Contrastive Learning in Image-Text-Label Space (CVPR 2022)



Unified Contrastive Learning in Image-Text-Label Space (UniCL)
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UniCL
Unified Contrastive Learning in Image-Text-Label Space (CVPR 2022)



Florence:
1st Foundation Model to Demonstrate Quality Leap in Multiple CV Tasks

Florence: A New Foundation Model for Computer Vision. (arXiv 2111.11432. Florence v1.0 released on 11/5/2021)



Florence Encoder + Text Decoder Adaptor (GIT)
Achieved SOTA results on 12 image/video captioning and QA tasks TextCap

TECSUN

Florence Image GIT Text Decoder
Encoder

Multi-head Feed
self-attention Forward

65.4
2]
138.2
+28.5

A A A
CoCa First human Flamingo

(Google) parity (125.5) (DeepMind)

GIT: A Generative Image-to-text Transformer for Vision and Language (arxiv 2205.14100)

A metro card is on a wooden table.



Florence Encoders + Object Detection Adaptor (GLIP)
Achieved SOTA results on zero-shot ODinW

https://computer-vision-in-the-wild.github.io/eccv-2022/
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Grounding examples:
Prompt: jellyfish. Prompt:
penguin. puffin. person. chair.
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Stingray.

Grounded Language-Image Pre-training (CVPR 2022)
GLIPv2: Unifying Localization and Vision-Language Understanding (NeurlPS 2022)



https://computer-vision-in-the-wild.github.io/eccv-2022/

Florence: Pushing Open-World Perception
Toward Cognition

« Open-World Recognition
O Millions of tags
O Open-vocabulary search

O Object discovery
- Self-evolving Learning

« Leveraging External Knowledge:
Descriptive, Explainable, Predictive

O Story telling
O Open question and answer

O Video narrator



Florence: Open-world Recognition
Recognized object categories: 20k — millions ...
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Florence: Open-world Recognition
Recognized object categories: 20k — millions ...

Snoqualmie ridge




Florence: Open-world Recognition
Recognized object categories: 20k — millions ...

cambells well yes
inestrone with kale soup




Florence: Open-world Recognition
Recognized object categories: 20k — millions ...

along the river during
the gingming festival




Florence: Semantics

Text-image retrieval Object disco

Search: Search:

I Y “Game without age restriction”
Microsoft

Search:

Associate: “Game for kids at least 10 years old”

“Windows", “etc.” (Microsoft

Search:
products) to the query words

“Game for teen”



State-of-the-Art Human Matting powered by Florence

Trained on 2M human matting data using pre-trained Florence visual encoder




Expanding from Human to Broader Categories

Florence pre-training empowers zero-shot segmentation ability

iPhone XR Veggie Burgers

Output from a Florence segmentation model only trained on human matting data



A Self-Evolving Learning System for Segmentation

Explicitly expands the segmentation ability to unseen categories

Bus
Generate pseudo
masks on unseen
categories
Sofa

: Automatic quality P .
Re-train model ane ‘ ®
with new data Gl s by ?
Florence
Initial result After 1stiteration
(output from segmentation (output from the model
model trained on human trained on the pseudo-GT

matting only) data filtered by Florence)



Florence segmentation self-evolves
Evaluated on COCO instance segmentation

Evolution-2
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Florence Creative Al Capability: Story-Telling

a Inside China’s Ministry of Truth
' 1 The . Trump in trobble
! Economist A “The image is of a cover of The
Motorcyces tht fy ‘ Economist magazine. The headline is
M hq fth*é ggﬁ. | 8 "March of the machines”. The cover
arciior t dn MINES features a drawing of the
A sp:{:md nérﬁ&nujl{a it e

| 8 i ! :
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I 2
. »
4 B
) !
.
4

Maschinenmensch, or machine man, in
the center. The background is art deco
in style. This image represents the rise
of robots and artificial intelligence, as
they become increasingly important in
our society.”

AL

InreLIGENce
p b




Florence Creative Al Capability: Story-Telling

Ukraine’s Minsky moment

T l‘ e indian democracy: festive but fraying
x

Xl Jinping’s thinker-in-chief

-
E C 0 n O m l S t Redistricting: a bipartisan scandal

When the ride ends

What would happen if the markets crashed?

“The image is of a cover of The
Economist magazine. The image
features a roller coaster in the clouds.
The roller coaster is red and blue and
has people on it. Above the roller
coaster are the words " When the ride
ends". The roller coaster in the clouds is
a metaphor for the economy. It's a fun,
exciting ride that everyone loves until it
crashes down to earth, causing
economic loss and recession. A market
crash is the final nail in the coffin,
leaving people reeling in its wake.”



Story-Telling: Florence + GPT-3

Visual Clues Prompt
) o
Tags: argyle sweater vest, nerd ... Objectsin th..'s fmage: . .
a man wearing a vest. vest, is at lower middle of the
Caption: @ man holding a red apple image and is moderate in the image. Attribute: sweater
vest
Objects: Tags: vest apple, is at left of the image and is smallin the image.
Caption: @ man wearing a vest Attribute: gala apple
Attribute: sweater vest |
Location: [123, 176,334, 461 ] Caption:
Tags: apple aman holding a red apple
Caption: N/A Taas:
ibute: gala apple ags- .
e - This image is about argyle sweater vest, nerd, geek
Lzitere Ba. 218 18- 2ol charming, argyle sweater, sweater vest.
seeeet ) Describe this image in detail:
Candidate Paragraphs
-
Open vocab tagger This image shows a man wearing an argyle sweater ... LaMngt;a?e
ode
Output Paragraph Thisimage features a man dressed in a suit and tie ...
This image shows a man wearing an argyle sweater vest. He This image is of @ man holding an apple in his hand
is holding an apple in his hand and appears to be a nerd or
geek. He is charming and looks very professional.
\ J
Visual clues: Bridging with Explicit Structured Textural clue:
» A holistic and composable representation of the image. « Easy implementation with no extra training.
» A natural bridge between vision and language foundation models. * Premium language quality.
* Interpretable, not only for humans, but also for machines.  Versatile to different applications.

Visual Clues: Bridging Vision and Language Foundations for Image Paragraph Captioning (NeurlPS 2022)



Florence: Knowledge-based Visual Question & Answer
SOTA in OK-VQA: leverage regional representations for retrieving external knowledge

Wikidata
: N @ - P
Regional * w3 Explicit Knowledge
5 Q Golden retriever:  —p»
I Features &w v Dog breed
mage: N
GLIP Regional %’J
Positions Visual Object-centric o 8_
Regional Encoder Region Nestmes S _, Answer:
— )
Tags , : @) Golden
Captioner —L Contoit Y N Eueplick Knivlcigs l, & retriever
e = etriever: The dog | (@)
Questi “Two brown dogs fighting | rsouxmaiens ] g
uestion: : » ' ‘ ~
over a red frisbee.
“What type of dog is pictured >
on the left?”

Previous SOTA
» Retrieve various of external knowledge in a simple sliding window manner
* Use question + retrieved knowledge to answer the question (no visual features!)

» Local visual features are important in retrieving external knowledge
* Regional features to retrieve external knowledge, e.g., from Wikidata
* Regional descriptions to obtain implicit knowledge, e.g., using GPT-3
* The final answering model should look at the image thoroughly
« Extended language encoder-decoder model to incorporate the regional features and region coordinates.

REVIVE: REgional Visual Representation for knowledge-based Visual quEstion answering (NeurlPS 2022)



Florence: Knowledge-based Visual Question & Answer

Object Regions

Explicit Knowledge

Explicit Knowledge

Brazilian Terrier:
Dog breed

Shelpek:
Kazakh flatbread, using butter,
milk and sugar

What is on this sandwich? What breed of dog is this?

Comforter:

C: A man eating a sandwich. sandwich, Cheeseburger: C: A brown dog laying on a couch with Type of bedcover, often not as
snack food, food, person, outdoor Hamburger topped with cheese blankets. mammal, wall, dog, sofa, floor thick as a duvet
A: Cheese Implicit Knowledge A: Terrier Implicit Knowledge
GT: [‘Cheese’, ‘Cheese’, ‘Cheese’, ‘Cheese’, Cheese: The cheese is the most & L+ [‘Terrier’, ‘Terrier’, ‘Terrier’, ‘Terrier’, Sl The s L

‘Cheese’, ‘Cheese’, ‘Cheese’, ‘Cheese’, important part of the sandwich ‘Crossbreed’, ‘Crossbreed’, ‘Pit bull’, BERN= oG08 B8 FEO0E

¢ » ¢ ’ ‘Pit bull’, ‘Shepard’, ‘Shepard’

Omelet’, *Omelet’] Cheddar: The cheese is the Ace:: P P ] : . .
Acc.: 1.0 main ingredient in the sandwich cc.: 1.0 Terrier: The dog is a terrier

REVIVE: REgional Visual Representation for knowledge-based Visual quEstion answering (NeurlPS 2022)



Integrative Multi-modality: Video Narrator
Automatically generate the narration of the video and its neural synthesized speech

i-Code: An Integrative and Composable Multimodal Learning Framework (AAAI 2022)



Q&A

Thanks!
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