

Florence: A New Computer Vision Foundation Model

Lu Yuan Microsoft Cloud & Al

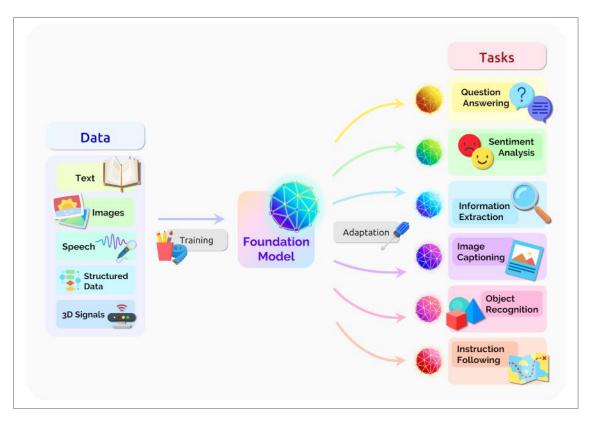
The Era of Foundation Models

A foundation model can centralize the information from all the data from various modalities.

This one model can then be adapted to a wide range of downstream tasks.

Existing Foundation Models:

- GPT-3
- CLIP
- Florence
- Flamingo
- CoCa
- PaLI



R. Bommasani et. al., On the Opportunities and Risks of Foundation Models, CRFM Stanford, 2021

A Glimpse of Diverse Computer Vision Tasks

Image Classification

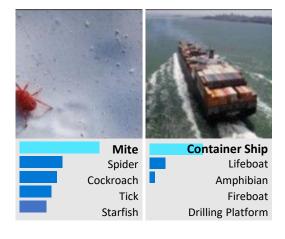
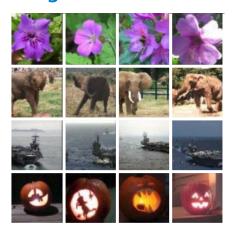


Image Retrieval



Object Detection

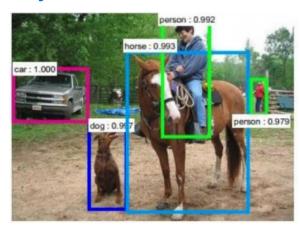
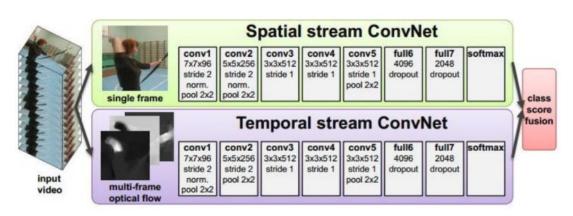


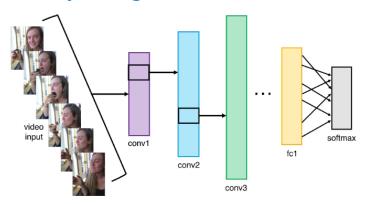
Image Segmentation

Pose Estimation

Video Classification

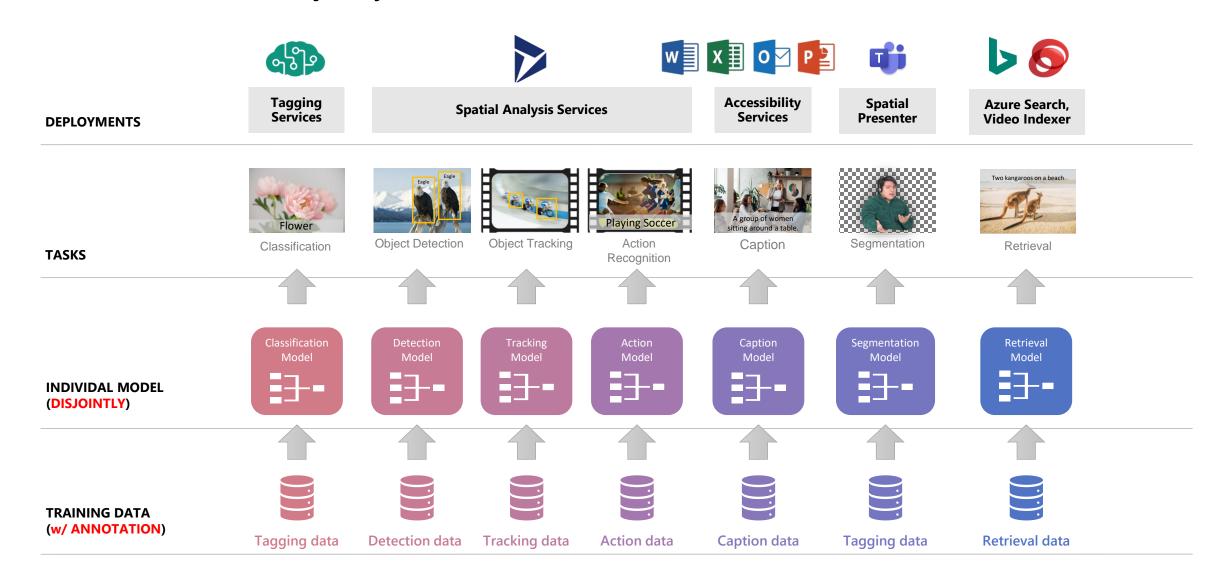


Activity Recognition



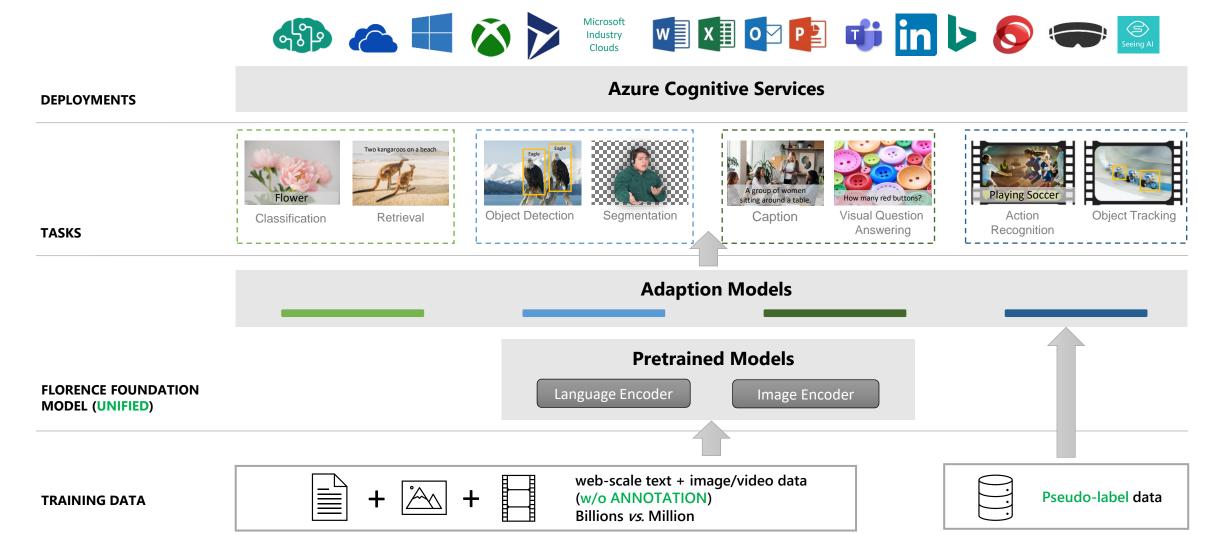
Before Florence: High cost & slow deployment

Each service is trained disjointly



After Florence: Low cost & fast deployment

Unified vision services



Florence: A New Foundation Model for Computer Vision

Florence unified **space**, **time** and **modalities** in computer vision under one pre-training + adapter framework

Training data

900M

Image encoder

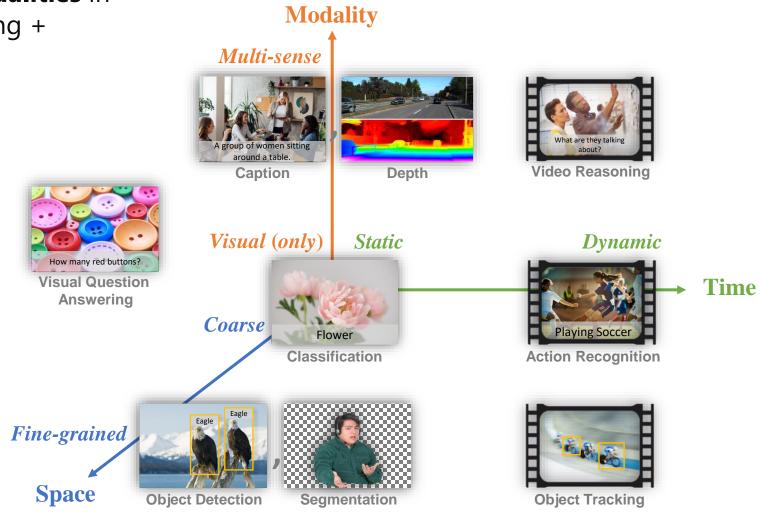
CoSwin (637M parameters)

Text encoder

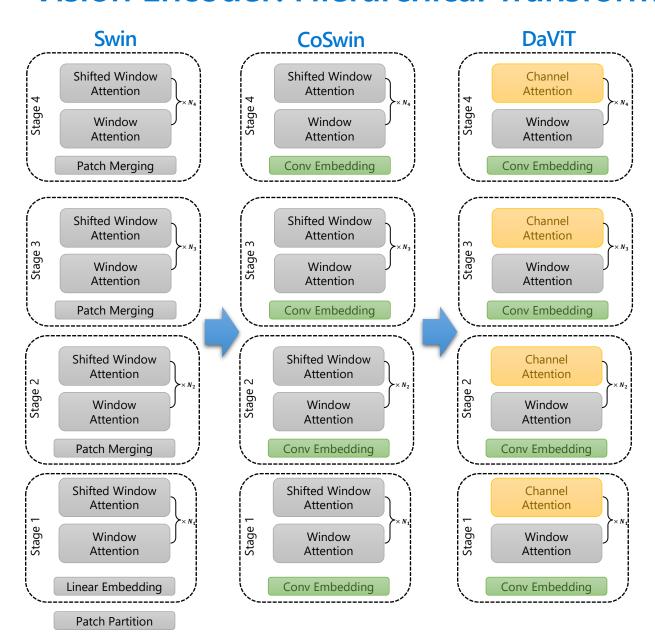
Transformers (256M parameters)

Compute resource

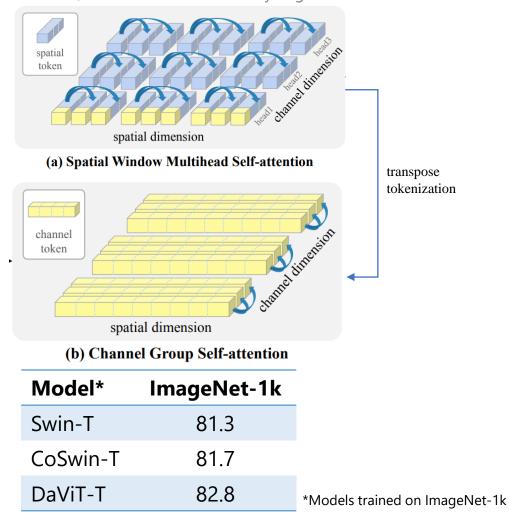
NVIDIA-A100 x 512, 14 days



Vision Encoder: Hierarchical Transformer

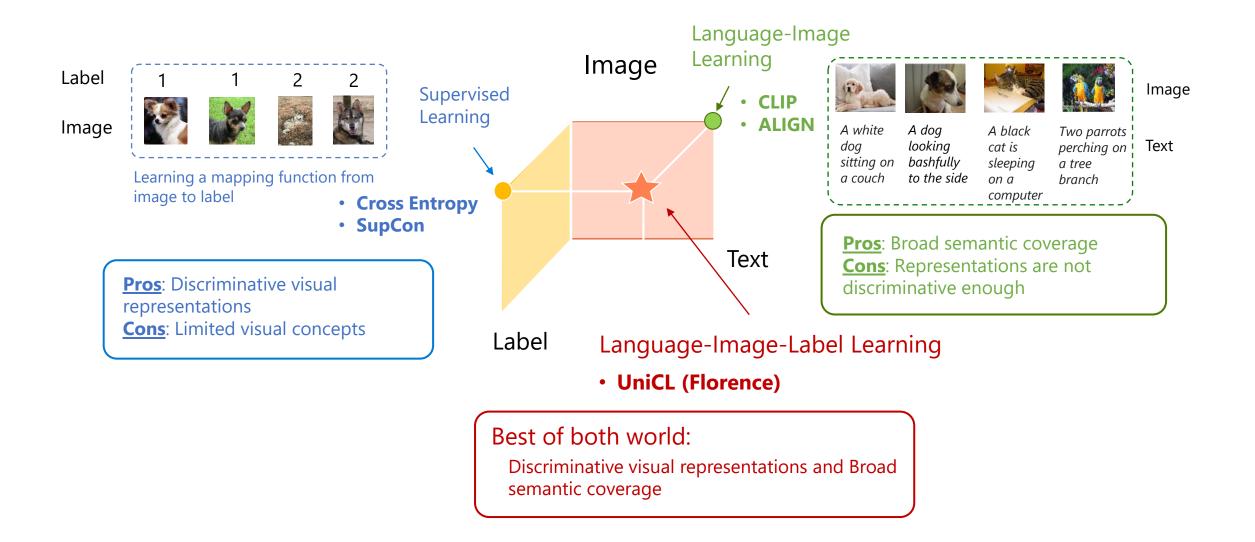


Dual attention Vision Transformer: Enjoy the efficiency of local attention, meanwhile have the ability of global interaction.

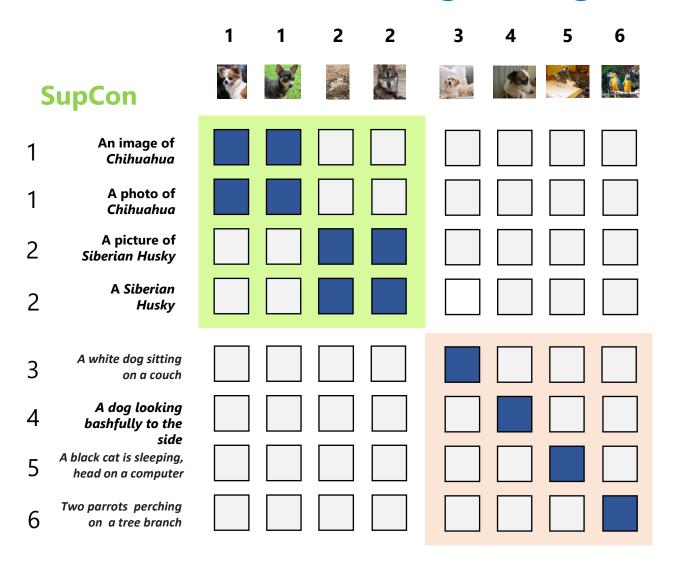


- [1] Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. (ICCV 2021)
- [2] Florence: A New Foundation Model for Computer Vision. (arXiv 2111.11432)
- [3] DaViT: Dual Attention Vision Transformers. (ECCV 2022)

Unified Contrastive Learning in Image-Text-Label Space (UniCL)



Unified Contrastive Learning in Image-Text-Label Space (UniCL)



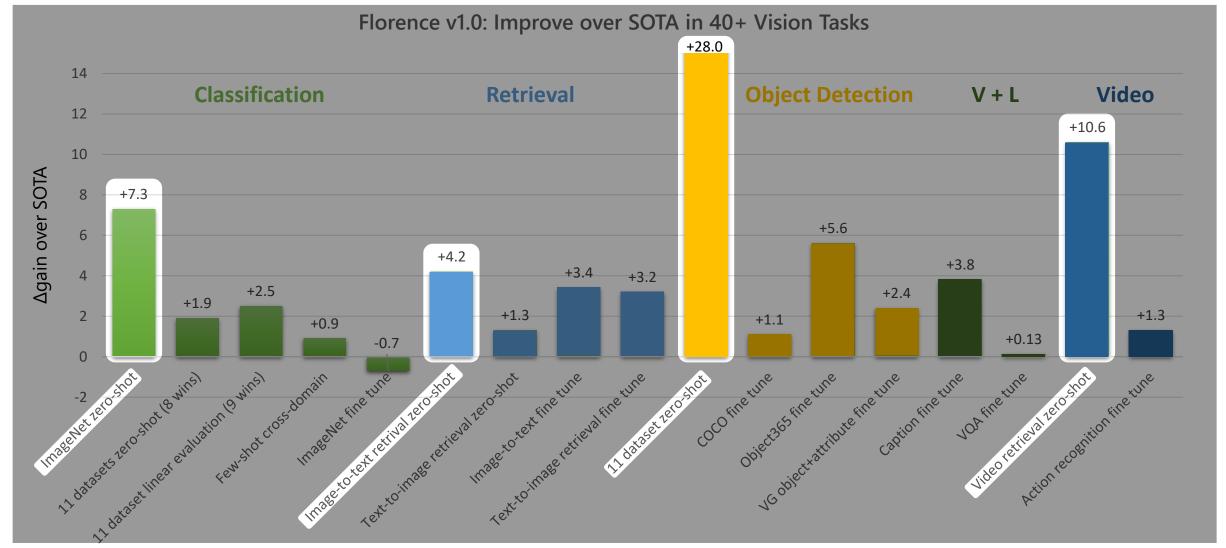
Method	Zero-Shot on IN-1K
CLIP (400M data, 500M params)	76.2
Florence-UniCL (900M data, 900M params)	83.7

UniCL

CLIP

Florence:

1st Foundation Model to Demonstrate Quality Leap in Multiple CV Tasks



Florence: A New Foundation Model for Computer Vision. (arXiv 2111.11432. Florence v1.0 released on 11/5/2021)

Florence Encoder + Text Decoder Adaptor (GIT)

Achieved SOTA results on 12 image/video captioning and QA tasks

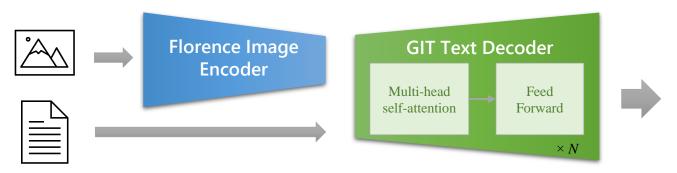


	Image captioning			Image QA			Video captioning			Video QA		
	0000	nocaps	VizWiz*	TextCaps*	ST-VQA*	VizWiz*	OCR-VQA	MSVD	MSRVTT	VATEX*	MSVD-QA	TGIF-Frame
Prior SOTA	138.7 [111]	120.6 [106]	94.1 [21]	109.7 [104]	59.7 [104]	65.4 [2]	64.1 [27]	120.6 [58]	60 [78]	86.5 [86]	48.3 [89]	69.5 [109]
$\frac{\text{GIT (ours)}}{\Delta}$	148.8 +10.1	123.0 +3.7	114.4 +20.3	138.2 +28.5	69.6 +9.9	67.5 +2.1	68.1 +4.0	180.2 +59.6	73.9 +13.9	93.8 +7.3	56.8 +8.5	72.8 +3.3
		▲ CoCa (Google		rst humarity (125		▲ Flaming DeepMi	_					

GIT: A Generative Image-to-text Transformer for Vision and Language (arxiv 2205.14100)

TextCap

A tecsun radio with the time of 12:54.

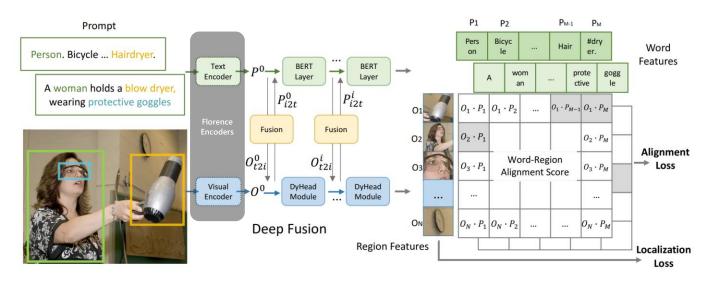
VizWiz

A metro card is on a wooden table.

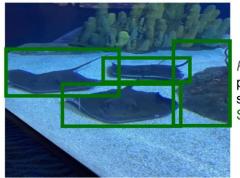
Florence Encoders + Object Detection Adaptor (GLIP)

Achieved SOTA results on zero-shot ODinW

https://computer-vision-in-the-wild.github.io/eccv-2022/



Grounding examples:

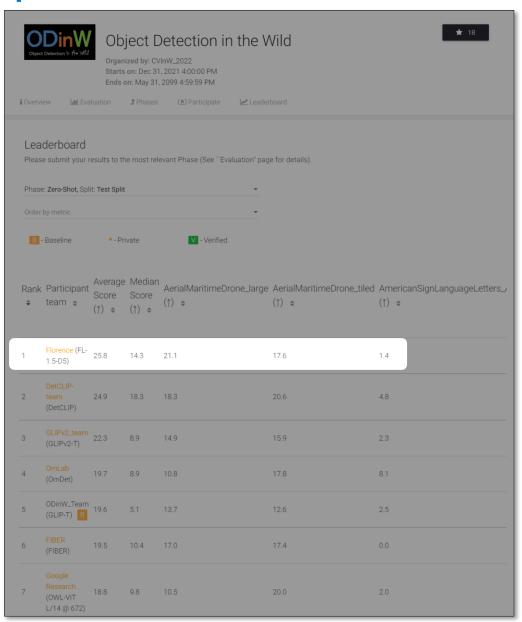


Prompt: jellyfish. penguin. puffin. shark. starfish. Stingray.

Prompt:
person. chair.
dining table ...
potted plant. vase.

Grounded Language-Image Pre-training (CVPR 2022)

GLIPv2: Unifying Localization and Vision-Language Understanding (NeurIPS 2022)

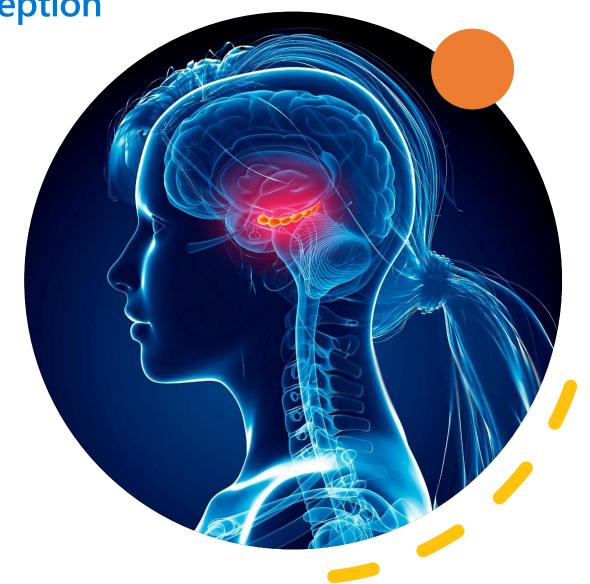


Florence: Pushing Open-World Perception

Tangent Countries

Toward Cognition

- Open-World Recognition
 - Millions of tags
 - ☐ Open-vocabulary search
 - Object discovery
- Self-evolving Learning
- Leveraging External Knowledge: *Descriptive*, *Explainable*, *Predictive*
 - Story telling
 - Open question and answer
 - Video narrator



Recognized object categories: 20k → millions ...

Logo

Landmark

Celebrity

Movie

Artworks

Documents

American white ibis

sunflower hearts

shamu show

Griffith observatory

BMW headquarter

Mt rainier Washington

Microsoft

usps tracking

capri sun fruit

cambells well yes minestrone with kale soup

barefoot contessa cookbook

dove sensitive

jean reno

chalize theron

dwade

elon musk

the return of the jedi

on strange tides, pirates of the caribbean

avengers trails

the lion king movie

chest CT

Medical

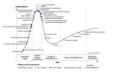
abdominal organs

along the river during

irises painting

free body diagram

dock receipt



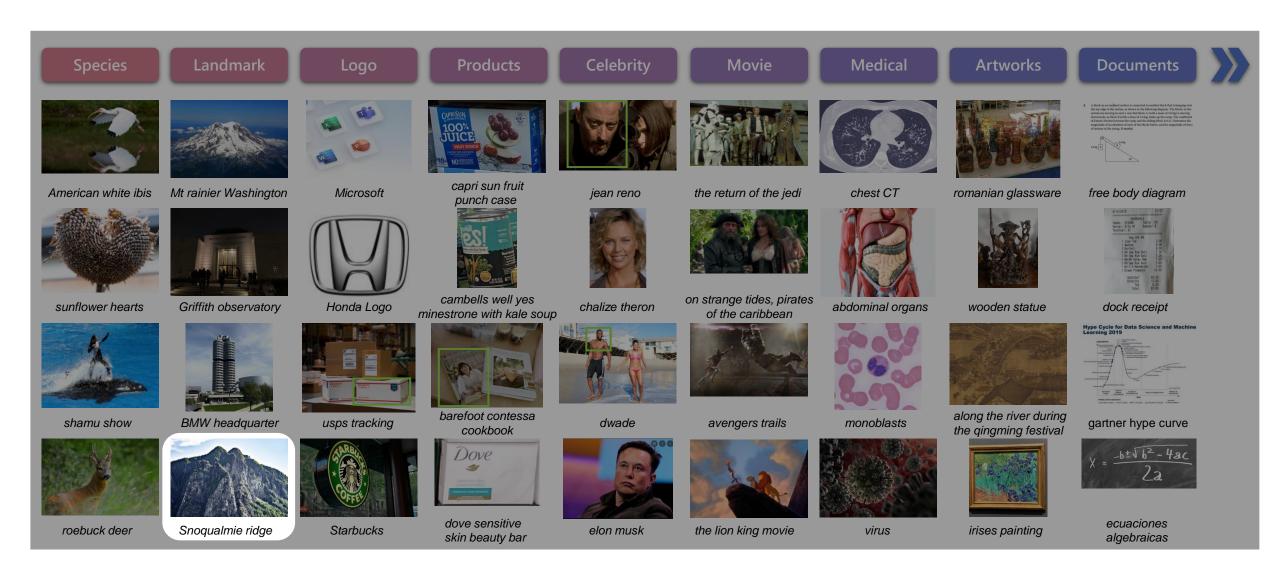
gartner hype curve

ecuaciones algebraicas

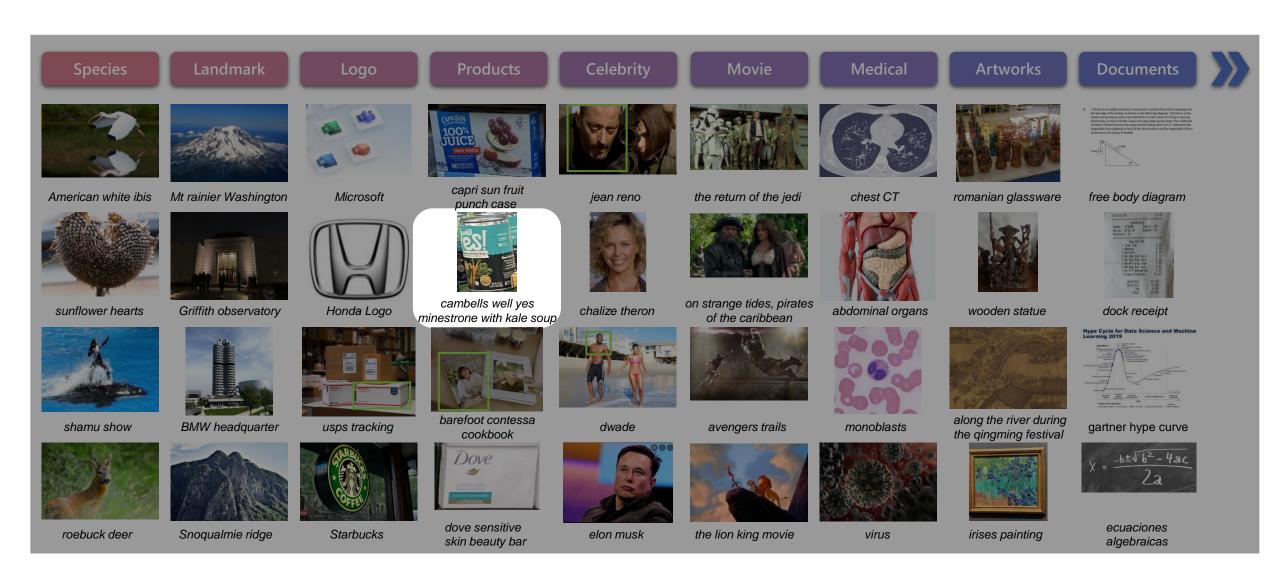
skin beauty bar

virus

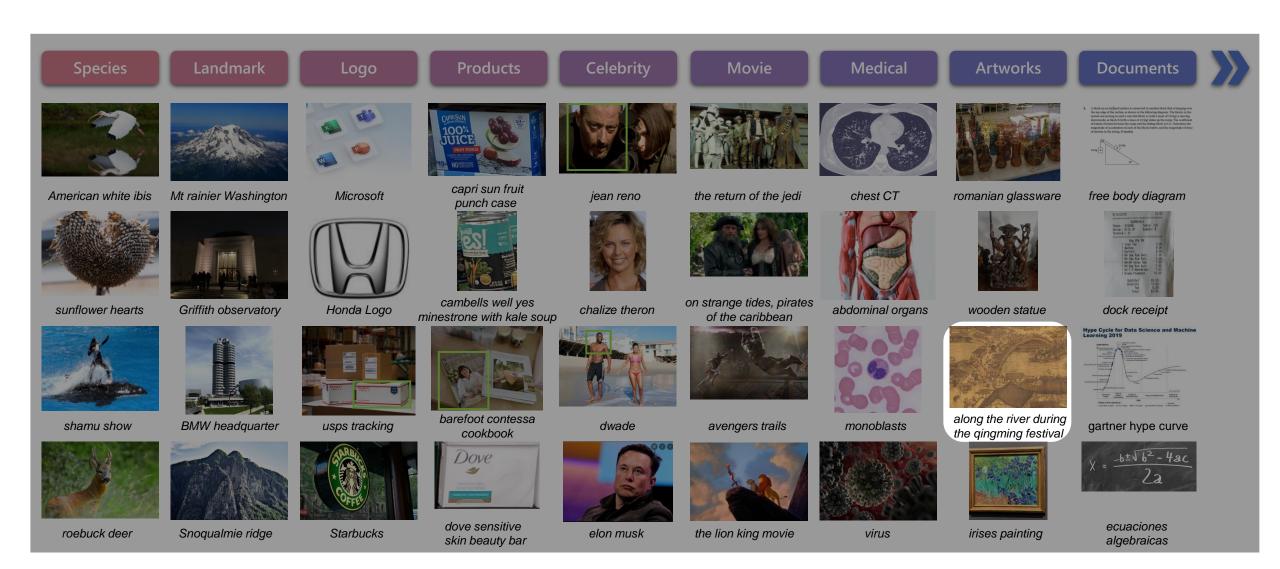
Recognized object categories: 20k → millions ...



Recognized object categories: 20k → millions ...



Recognized object categories: 20k → millions ...



Florence: Semantics

Search:

"Microsoft"

Associate:

"Windows", "etc." (Microsoft products) to the query words

Search:

"Game without age restriction"

Search:

"Game for kids at least 10 years old"

Search:

"Game for teen"

State-of-the-Art Human Matting powered by Florence

Trained on 2M human matting data using pre-trained Florence visual encoder

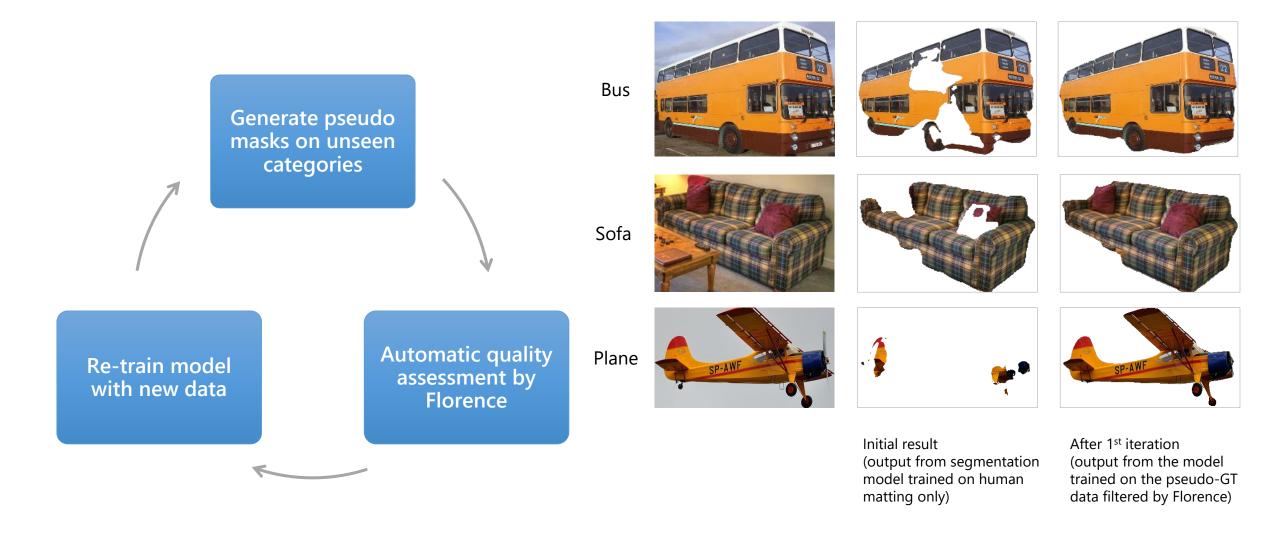
Expanding from Human to Broader Categories

Florence pre-training empowers zero-shot segmentation ability

Output from a Florence segmentation model only trained on human matting data

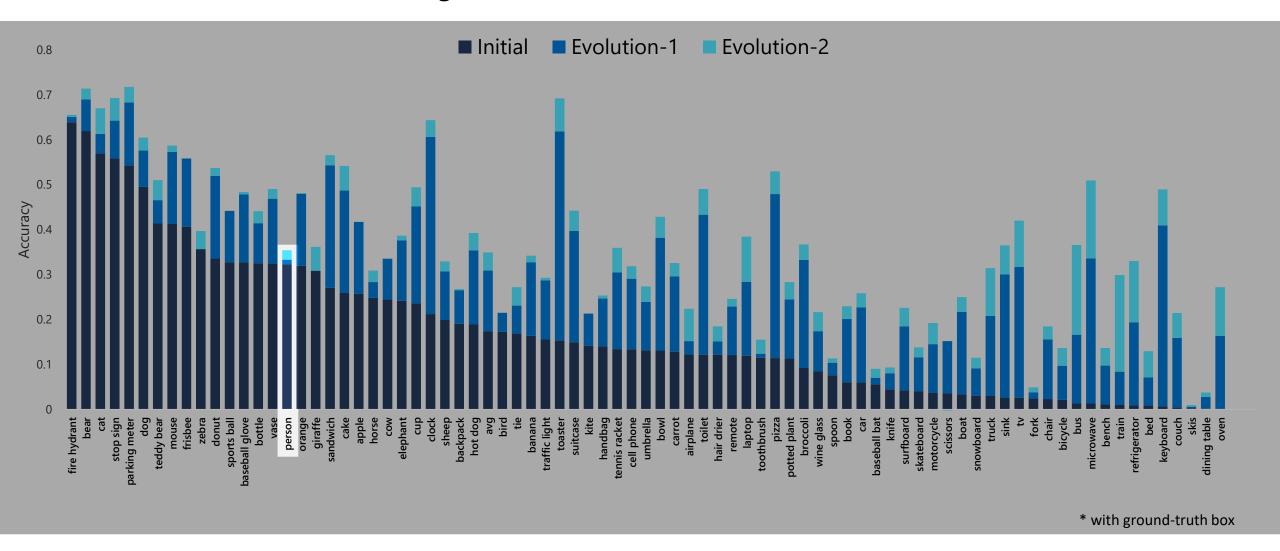
A Self-Evolving Learning System for Segmentation

Explicitly expands the segmentation ability to unseen categories



Florence segmentation self-evolves

Evaluated on COCO instance segmentation



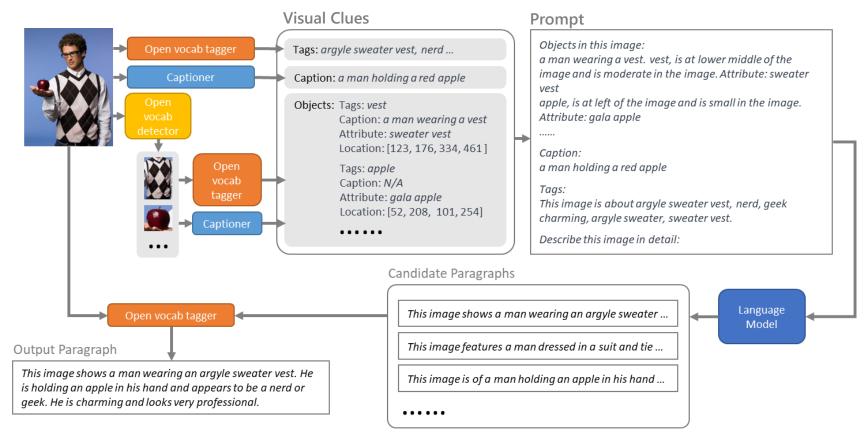
Florence Creative Al Capability: Story-Telling

"The image is of a cover of The Economist magazine. The headline is "March of the machines". The cover features a drawing of the Maschinenmensch, or machine man, in the center. The background is art deco in style. This image represents the rise of robots and artificial intelligence, as they become increasingly important in our society."

Florence Creative AI Capability: Story-Telling

"The image is of a cover of The Economist magazine. The image features a roller coaster in the clouds. The roller coaster is red and blue and has people on it. Above the roller coaster are the words "When the ride ends". The roller coaster in the clouds is a metaphor for the economy. It's a fun, exciting ride that everyone loves until it crashes down to earth, causing economic loss and recession. A market crash is the final nail in the coffin, leaving people reeling in its wake."

Story-Telling: Florence + GPT-3



Visual clues:

- A holistic and composable representation of the image.
- A natural bridge between vision and language foundation models.
- Interpretable, not only for humans, but also for machines.

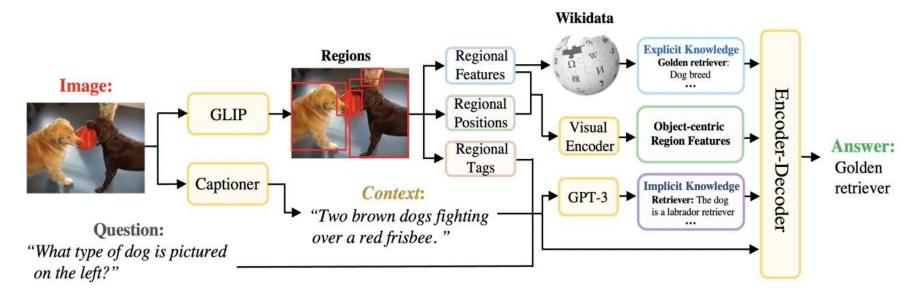
Bridging with Explicit Structured Textural clue:

- Easy implementation with no extra training.
- Premium language quality.
- Versatile to different applications.

Visual Clues: Bridging Vision and Language Foundations for Image Paragraph Captioning (NeurIPS 2022)

Florence: Knowledge-based Visual Question & Answer

SOTA in OK-VQA: leverage regional representations for retrieving external knowledge



Previous SOTA

- Retrieve various of external knowledge in a simple sliding window manner
- Use question + retrieved knowledge to answer the question (no visual features!)
- Local visual features are important in retrieving external knowledge
 - Regional features to retrieve external knowledge, e.g., from Wikidata
 - Regional descriptions to obtain implicit knowledge, e.g., using GPT-3
- The final answering model should look at the image thoroughly
 - Extended language encoder-decoder model to incorporate the regional features and region coordinates.

Florence: Knowledge-based Visual Question & Answer

Q: What is on this sandwich?

C: A man eating a sandwich. sandwich, snack food, food, person, outdoor

A: Cheese

GT: ['Cheese', 'Cheese', 'Cheese', 'Cheese', 'Cheese', 'Cheese', 'Cheese', 'Cheese', 'Omelet', 'Omelet']

Acc.: 1.0

Object Regions

Explicit Knowledge

Shelpek:

Kazakh flatbread, using butter, milk and sugar

•••

Cheeseburger:

Hamburger topped with cheese

Implicit Knowledge

Cheese: The cheese is the most important part of the sandwich

Cheddar: The cheese is the main ingredient in the sandwich

What breed of dog is this?

C: A brown dog laying on a couch with blankets. mammal, wall, dog, sofa, floor

A: Terrier

GT: ['Terrier', 'Terrier', 'Terrier', 'Terrier', 'Crossbreed', 'Crossbreed', 'Pit bull', 'Pit bull', 'Shepard', 'Shepard']

Acc.: 1.0

Object Regions

Explicit Knowledge

Brazilian Terrier: Dog breed

..

Comforter:

Type of bedcover, often not as thick as a duvet

Implicit Knowledge

Poodle: The dog is a poodle

•••

Terrier: The dog is a terrier

Integrative Multi-modality: Video Narrator

Automatically generate the narration of the video and its neural synthesized speech

i-Code: An Integrative and Composable Multimodal Learning Framework (AAAI 2022)

Q & A

Thanks!