OFA: Towards Unified Multimodal Multitask Pretraining

Junyang Lin

Twitter: @JustinLin610

Email: justinlin930319@hotmail.com

DAMO Academy, Alibaba Group

Overview

- Review of Multimodal Pretraining
- Introduction to OFA (One-For-All)
 - Methodology
 - Experiments
 - Extension: Prompt Tuning, Chinese Models, ...
 - Opensource and Demos
- Future Work

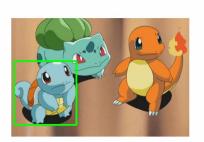
Review of Multimodal Pretraining

Vision-Language Tasks

Image Captioning

the album cover of the beatles abbey road

Visual Grounding



Visual Question Answering

What is the style of the painting?

Text-to-Image Generation

A clock tower looms underneath a clear sky.

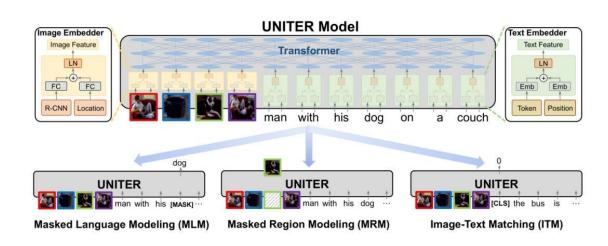
Pretraining on Large-scale Datasets

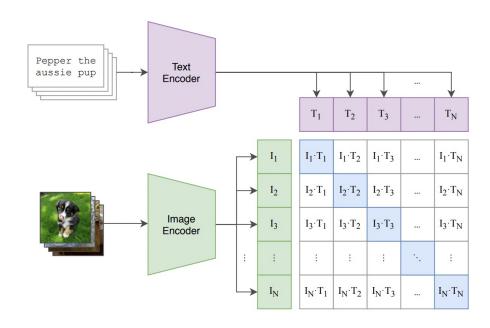
- Large datasets of image-text pairs
- Pretraining with "language" modeling & image-text pairing, ...
- Transfer to downstream tasks with finetuning

Two Trends in Multimodal Pretraining

Generative Pretraining

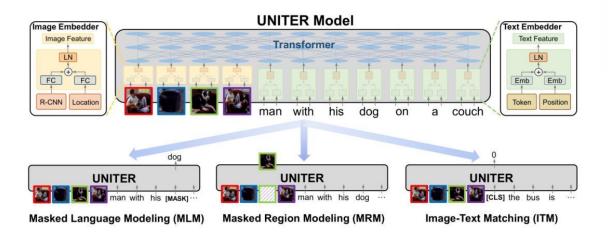
Contrastive Pretraining



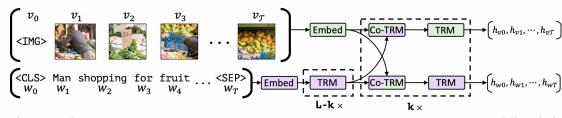


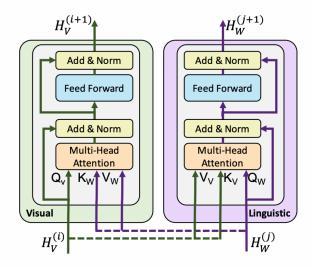
Transfer of BERT to VL

Single Stream



Dual Stream

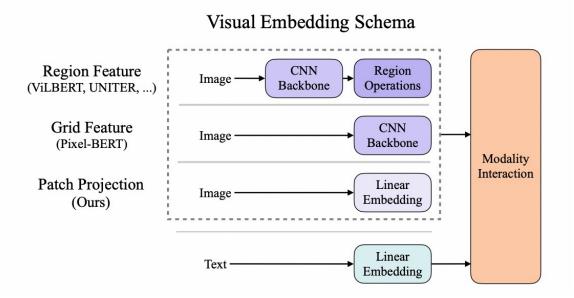


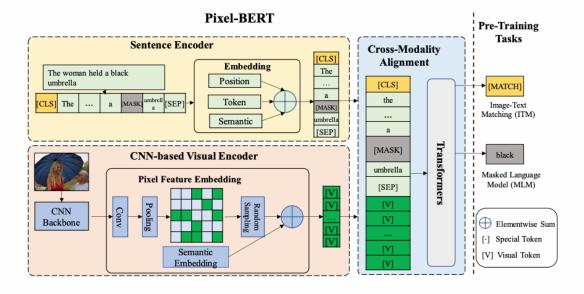


From Objects to Raw Image Features

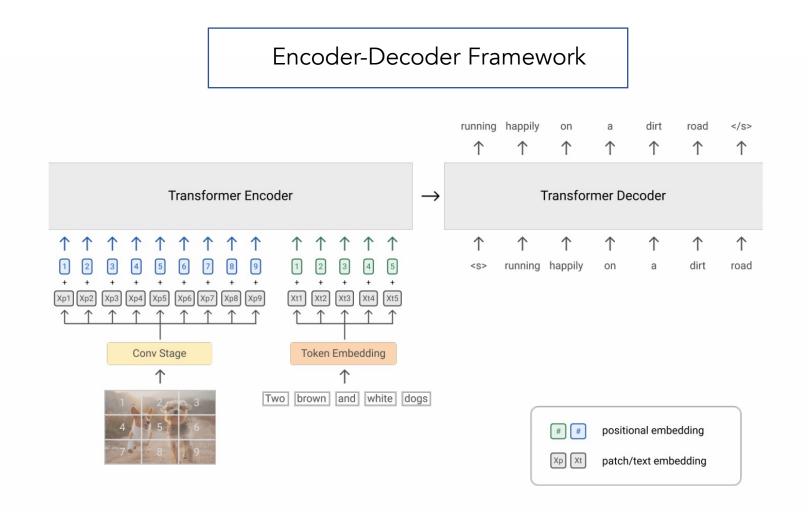
Patch Projection

Vision Backbone





Adapting Understanding and Generation



Summary

- Pretraining is important for vision-language representation learning
- A simple end-to-end model is expected
- Stepping forward to Unification (OFA, Gato, Unified-IO, GIT, etc.)

OFA: Multimodal Multitask Pretraining for a "One-For-All" Model

Features for a Unified Model

Task Agnostic

Unified task representation to support different types of tasks

Modality Agnostic

Unified input and output representation shared among all tasks to handle different modalities

Task Comprehensive

Enough task variety to accumulate generalization ability robustly

3 Unifications

1/0

Architecture

Task

Shard I/O across different modalities and tasks A shared encoder-decoder framework without task-specific layers

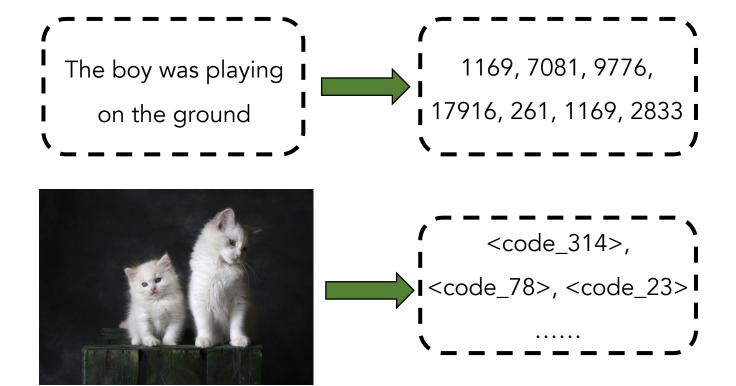
Varieties of tasks are unified to the sequence-tosequence format

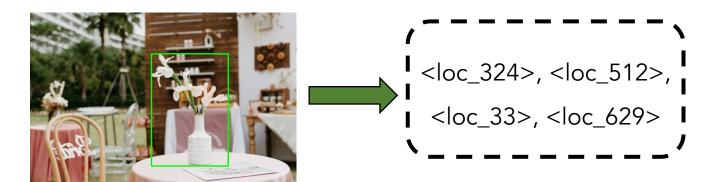
I/O

Byte-Pair Encoding for texts

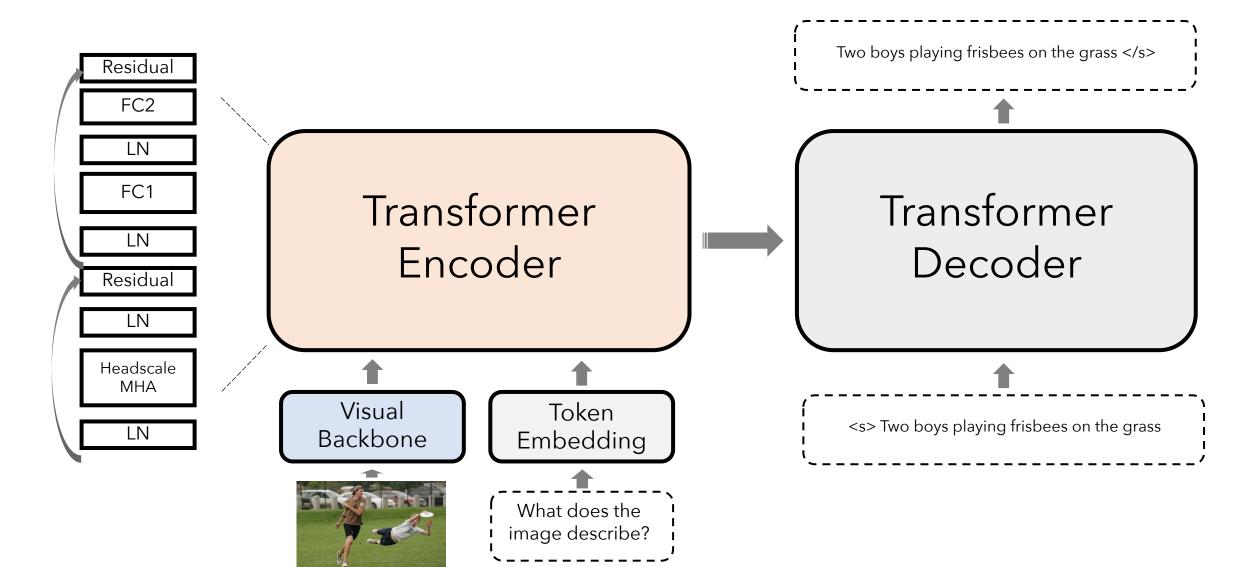
Vector Quantization for images

Discretization for bounding boxes

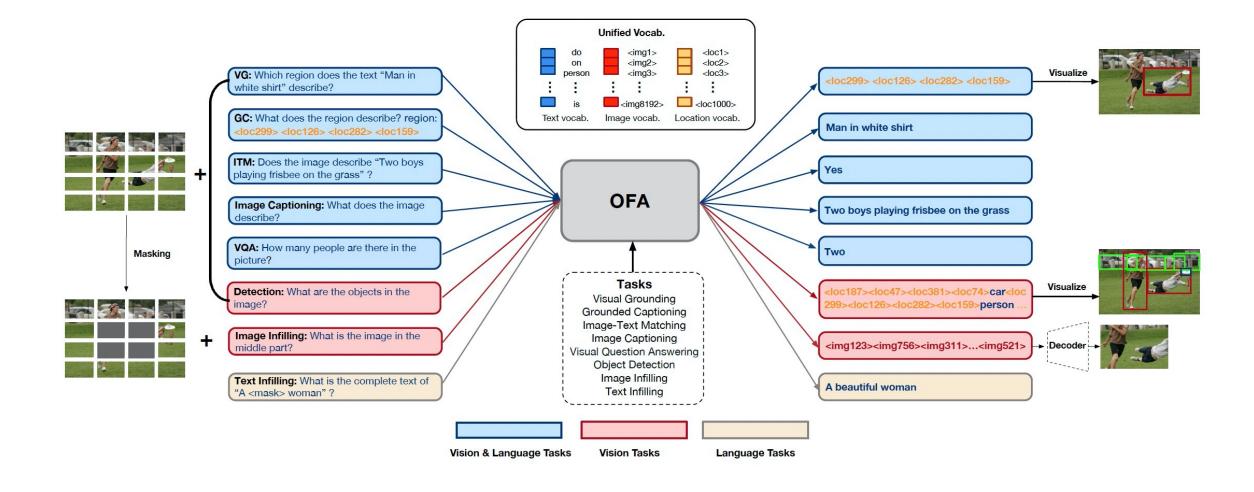




Architecture



Task



Pretraining Datasets

Туре	Pretraining Task	Source	#Image	#Sample
	Image Captioning Image-Text Matching	CC12M, CC3M, SBU, COCO, VG-Cap	14.78M	15.25M
Vision & Language	Visual Question Answering	VQAv2, VG-QA, GQA	178K	2.92M
	Visual Grounding Grounded Captioning	RefCOCO, RefCOCO+, RefCOCOg, VG-Cap	131K	3.20M
Vision	Detection	OpenImages, Object365, VG, COCO	2.98M	3.00M
V 101011	Image Infilling	OpenImages, YFCC100M, ImageNet-21K	36.27M	-
Language	Masked Language Modeling	Pile (Filtered)	-	140GB*

Model Card

Model	#Param.	Backbone	Hidden size	Intermediate Size	#Head	#Enc. Layers	#Dec. Layers
$\overline{ ext{OFA}_{ ext{Tiny}}}$	33M	ResNet50	256	1024	4	4	4
OFA_{Medium}	93M	ResNet101	512	2048	8	4	4
OFA_{Base}	182M	ResNet101	768	3072	12	6	6
OFA_{Large}	472M	ResNet152	1024	4096	16	12	12
$\mathrm{OFA}_{\mathrm{Huge}}$	930M	ResNet152	1280	5120	16	24	12

Experiments

- Multimodal:
 - Cross-modal understanding: VQA, SNLI-VE.
 - Image-to-text generation: MSCOCO Caption
 - Visual Grounding: RefCOCO, RefCOCO+, RefCOCOg
 - Text-to-Image Generation: MSCOCO
- Unimodal:
 - NLU: GLUE
 - NLG: Gigaword
 - Image Classification: ImageNet

Vision-Language Understanding

Model	VC	QA	SNL	I-VE
Model	test-dev	test-std	dev	test
UNITER	73.8	74.0	79.4	79.4
OSCAR	73.6	73.8	-	-
VILLA	74.7	74.9	80.2	80.0
VL-T5	-	70.3	-	-
VinVL	76.5	76.6	-	-
UNIMO	75.0	75.3	81.1	80.6
ALBEF	75.8	76.0	80.8	80.9
METER	77.7	77.6	80.9	81.2
VLMo	79.9	80.0	-	-
SimVLM	80.0	80.3	86.2	86.3
Florence	80.2	80.4	-	-
$\overline{\text{OFA}_{ ext{Tiny}}}$	70.3	70.4	85.3	85.2
$OFA_{\mathtt{Medium}}$	75.4	75.5	86.6	87.0
$OFA_{\mathtt{Base}}$	78.0	78.1	89.3	89.2
$OFA_{\mathtt{Large}}$	80.3	80.5	90.3	90.2
OFA	82.0	82.0	91.0	91.2

Image Captioning

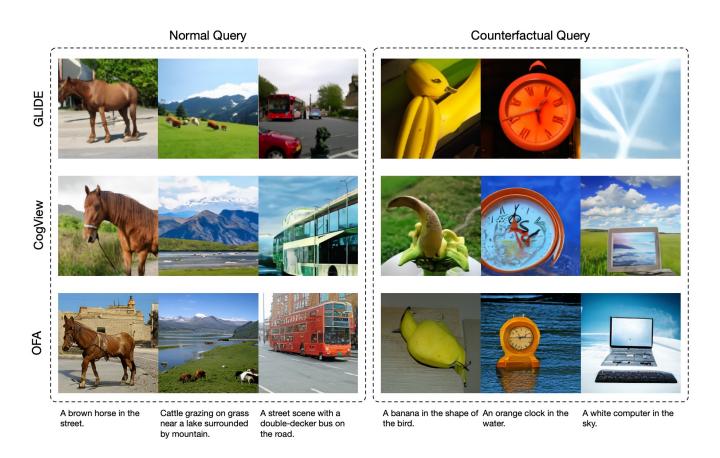
Madal	Cros	ss-Entropy Op	otimizatio	n		CIDEr Optim	ization	
Model	BLEU@4	METEOR	CIDEr	SPICE	BLEU@4	METEOR	CIDEr	SPICE
VL-T5 [57]	34.5	28.7	116.5	21.9	-	-	-	-
OSCAR [15]	37.4	30.7	127.8	23.5	41.7	30.6	140.0	24.5
UNICORN [58]	35.8	28.4	119.1	21.5	-	-	-	-
VinVL [17]	38.5	30.4	130.8	23.4	41.0	31.1	140.9	25.2
UNIMO [47]	39.6	-	127.7	-	-	-	-	-
LEMON [24]	41.5	30.8	139.1	24.1	42.6	31.4	145.5	25.5
SimVLM [22]	40.6	33.7	143.3	25.4	-	-	-	-
OFA _{Tiny}	35.9	28.1	119.0	21.6	38.1	29.2	128.7	23.1
OFA_{Medium}	39.1	30.0	130.4	23.2	41.4	30.8	140.7	24.8
OFA_{Base}	41.0	30.9	138.2	24.2	42.8	31.7	146.7	25.8
OFA_{Large}	42.4	31.5	142.2	24.5	43.6	32.2	150.7	26.2
OFA	43.9	31.8	145.3	24.8	44.9	32.5	154.9	26.6

Visual Grounding

Model	I	RefCOCO)	R	efCOCO	+	RefCOCOg		
	val	testA	testB	val	testA	testB	val-u	test-u	
VL-T5	-	-	-	-	-	-	-	71.3	
UNITER	81.41	87.04	74.17	75.90	81.45	66.70	74.86	75.77	
VILLA	82.39	87.48	74.84	76.17	81.54	66.84	76.18	76.71	
MDETR	86.75	89.58	81.41	79.52	84.09	70.62	81.64	80.89	
UNICORN	88.29	90.42	83.06	80.30	85.05	71.88	83.44	83.93	
$\overline{ ext{OFA}_{ ext{Tiny}}}$	80.20	84.07	75.00	68.22	75.13	57.66	72.02	69.74	
OFA_{Medium}	85.34	87.68	77.92	76.09	83.04	66.25	78.76	78.58	
OFA_{Base}	88.48	90.67	83.30	81.39	87.15	74.29	82.29	82.31	
OFA_{Large}	90.05	92.93	85.26	85.80	89.87	79.22	85.89	86.55	
OFA	92.04	94.03	88.44	87.86	91.70	80.71	88.07	88.78	

Text-to-Image Generation

Model	FID↓	CLIPSIM↑	IS↑
DALLE	27.5	-	17.9
CogView	27.1	33.3	18.2
GLIDE	12.2	-	-
Unifying	29.9	30.9	-
NÜWA	12.9	34.3	27.2
OFA	10.5	34.4	31.1



Text-to-Image Generation

An art painting of a soldier, in the style of cyperpunk.

The golden palace of the land of clouds.

Rustic interior of an alchemy shop.

An art painting of a city, in the style of cyberpunk.

A painting of the sunset cliffs in the style of fantasy art.

A painting of the superman.

An art painting of a dog, in the style of steampunk, white background.

A strawberry splashing in the coffee in a mug under the starry sky.

Elf elk in the forest illustration, HD, fantasy art.

An art painting of a city, in the style of steampunk.

A painting of the sunset cliffs in the style of dark fantasy art.

A painting of the superman, in the dark style.

Text Classification

Model	SST-2	RTE	MRPC	QQP	MNLI	QNLI
Multimodal Pretra	ined Base	eline Mo	odels			
VisualBERT [38]	89.4	56.6	71.9	89.4	81.6	87.0
UNITER [14]	89.7	55.6	69.3	89.2	80.9	86.0
VL-BERT [8]	89.8	55.7	70.6	89.0	81.2	86.3
VilBERT [13]	90.4	53.7	69.0	88.6	79.9	83.8
LXMERT [40]	90.2	57.2	69.8	75.3	80.4	84.2
Uni-Perceiver [61]	90.2	64.3	86.6	87.1	81.7	89.9
SimVLM [22]	90.9	63.9	75.2	90.4	83.4	88.6
FLAVA [60]	90.9	57.8	81.4	90.4	80.3	87.3
UNIMO [46]	96.8	-	-	-	89.8	-
Natural-Language	-Pretrain	ed SOT	A Models			
BERT [2]	93.2	70.4	88.0	91.3	86.6	92.3
RoBERTa [28]	96.4	86.6	90.9	92.2	90.2	93.9
XLNet [25]	97.0	85.9	90.8	92.3	90.8	94.9
ELECTRA [82]	96.9	88.0	90.8	92.4	90.9	95.0
DeBERTa [83]	96.8	88.3	91.9	92.3	91.1	95.3
Ours						
OFA	96.6	91.0	91.7	92.5	90.2	94.8

Text Generation

Model	ROUGE-1	Gigaword ROUGE-2	ROUGE-L
BERTSHARE [85]	38.13	19.81	35.62
MASS [86]	38.73	19.71	35.96
UniLM [29]	38.45	19.45	35.75
PEGASUS [87]	39.12	19.86	36.24
ProphetNet [88]	39.55	20.27	36.57
UNIMO [46]	39.71	20.37	36.88
OFA	39.81	20.66	37.11

Image Classification

Model	Top-1 Acc.
EfficientNet-B7 [89]	84.3
ViT-L/16 [6]	82.5
DINO [90]	82.8
SimCLR v2 [32]	82.9
MoCo v3 [35]	84.1
BEiT ₃₈₄ -L/16 [36]	86.3
MAE-L/16 [37]	85.9
OFA	85.6

Ablation Study on Tasks

Model	Caption CIDEr	VQA Test-dev	ImageNet Top-1 Acc.	Image Generation FID / CLIPSIM / IS
OFA_{Base}	135.6	76.0	82.2	20.8 / 31.6 / 21.5
w/o text infill. w/o image infill. w/o det. w/o ground.	134.8 136.3 133.3 134.2	75.6 76.3 75.4 75.5	83.2 81.8 81.4 82.0	20.3 / 31.7 / 21.8 23.2 / 31.0 / 20.0 20.9 / 31.5 / 21.6 21.2 / 31.5 / 21.5

Zero-shot Performance

Model					_		SNLI-VE Acc. (dev/test)
Uni-Perceiver	70.6	55.6	76.1	53.6	51.0	49.6	-
$\overline{\mathrm{OFA}_{\mathrm{Base}}}$	71.6	56.7	79.5	54.0	51.4	37.3	49.71 / 49.18

Old:

What color is the car?

New:

What color is the car in the region? region: <loc301>...

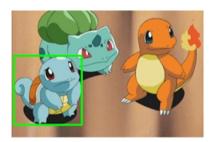
Q: what color is the car in the region? region: <loc301> <loc495> <loc501> <loc596>

A: tan

Q: what color is the car in the region? region: <loc512> <loc483> <loc675> <loc576>

A: gray

Out-of-Domain



A blue turtle-like pokemon with round head.

a man with green hair in green clothes with three swords at his waist

a sexy lady wearing sunglasses and a crop top with black hair

A green toad-like pokemon with seeds on its back.

a man in a straw hat and a red dress

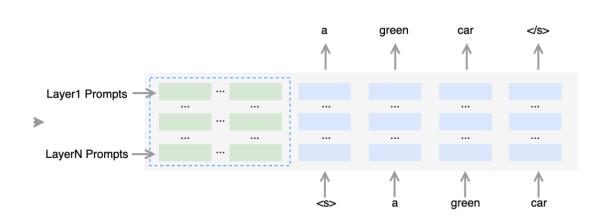
a man with a long nose in a hat and yellow pants

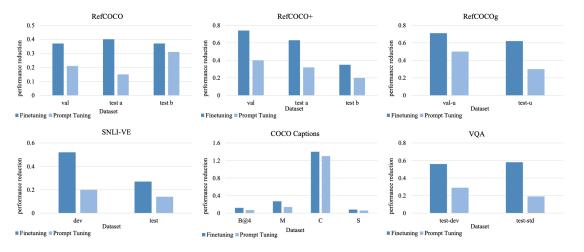
A red dinosaur-like pokemon with a flaming tail.

a blond-haired man in a black suit and brown tie

a strange skeleton

Extension: Prompt Tuning





Model	RefCOCO			R	RefCOCO+		RefCOCOg		SNLI-VE		COCO Captions				VQA	
Model	val	testA	testB	val	testA	testB	val-u	test-u	dev	test	B@4	M	C	S	test-dev	test-std
Base-size Mode	els															
Finetuning	88.48	90.67	83.30	81.39	87.15	74.29	82.29	82.31	89.30	89.20	41.00	30.90	138.2	24.20	78.00	78.10
Prompt Tuning	84.53	85.21	77.36	76.34	81.44	67.68	75.61	76.57	88.18	88.59	39.70	30.10	134.2	23.50	74.31	74.47
Large-size Mod	dels															
Finetuning	90.05	92.93	85.26	85.80	89.87	79.22	85.89	86.55	90.30	90.20	42.40	31.50	142.2	24.50	80.40	80.70
Prompt Tuning	90.05	92.31	85.59	84.54	89.40	77.77	85.27	85.89	90.04	90.12	41.81	31.51	141.4	24.42	78.30	78.53

Extension: Chinese Models

- Large-scale Chinese datasets for pretraining
- Downstream transfer to Chinese image captioning and visual grounding

MUGE Caption

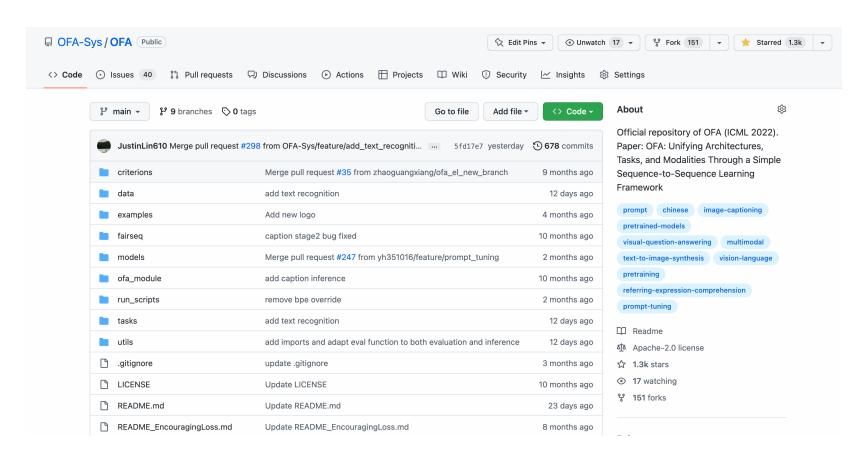
Model	BLEU@4	ROUGE-L	CIDEr-D
Trm	7.33	51.51	11.00
М6	16.19	55.06	30.75
OFA _{Base}	26.23	58.95	50.70
OFA _{Large}	27.32	59.20	53.51

RefCOCO-CN Series

Model	RefCOCO(val/testA/testB)	
OFA _{Base} (random-init)	30.13/35.07/25.03	
OFA _{Base}	82.18/86.07/ 76.68	
OFA _{Large}	82.84/86.54 /76.50	

Opensource

https://github.com/OFA-Sys/OFA



Opensource

Pretraining

Below we provide methods for pretraining OFA.

- ► 1. Prepare the Dataset
- ▶ 2. Pretraining

Image Captioning

We provide procedures to reproduce our results of image captioning on our paper below.

- ▶ 1. Prepare the Dataset & Checkpoints
- ▶ 2. Finetuning
- ▶ 3. Inference

Text-to-Image Generation

This part provides procedures for the finetuning and inference of text-to-image generation. See below.

- ▶ 1. Prepare the Dataset & Checkpoints
- ▶ 2. Shuffle the Training Data
- ▶ 3. Finetuning
- ▶ 4. Inference

Opensource

Image Captioning

We provide procedures to reproduce our results of image captioning on our paper below.

▼ 1. Prepare the Dataset & Checkpoints

Download data (see datasets.md) and models (see checkpoints.md) and put them in the correct directory. The dataset zipfile caption_data.zip contains caption_stage1_train.tsv, caption_stage2_train.tsv, caption_val.tsv and caption_test.tsv. Each image corresponds to only 1 caption in caption_stage1_train.tsv and corresponds to multiple captions in other TSV files (about 5 captions per image). Each line of the dataset represents a caption sample with the following format. The information of uniq-id, image-id, caption, predicted object labels (taken from VinVL, not used), image base64 string are separated by tabs.

162365 12455 the sun sets over the trees beyond some docks. sky&&water&&dock&&pole /9j/4AAQSkZ.

▼ 2. Finetuning

Following previous standard practice, we divide the finetuning process of image captioning into two stages. In stage 1, we finetune OFA with cross-entropy loss on 4 NVIDIA-V100 GPUs with 32GB memory (expected to obtain ~139.5 CIDEr on the validation set at this stage). In stage 2, we select the best checkpoint of stage 1 and train with CIDEr optimization on 8 NVIDIA-V100 GPUs. Note that CIDEr optimization is very unstable and requires careful hyperparameter tuning. If you encounter training errors in the stage2 finetuning, you can increase the batch size or reduce the learning rate. If neither of these works, you can directly set --freezeresnet to freeze the inner states of batch normalization.

```
cd run_scripts/caption
nohup sh train_caption_stage1.sh > train_stage1.out & # stage 1, train with cross-entropy loss
nohup sh train_caption_stage2.sh > train_stage2.out & # stage 2, load the best ckpt of stage1 and
```

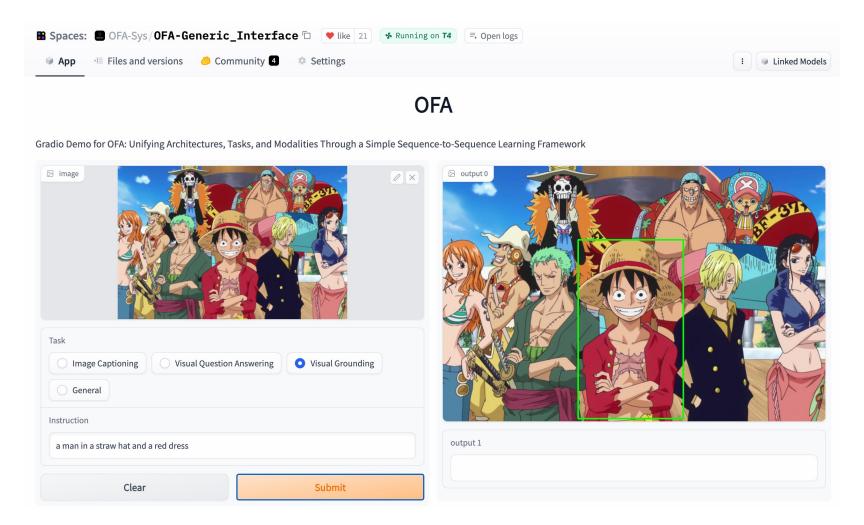
▼ 3. Inference

Run the following commands to get your results and evaluate your model.

```
cd run_scripts/caption ; sh evaluate_caption.sh # inference & evaluate
```

Demo

https://huggingface.co/spaces/OFA-Sys/OFA-Generic_Interface



Future Work

Future Work

- A Step forward:
 - A multimodal multitask system for extensive modality and task combinations
 - A single line of code to specify tasks and modalities
- Unified Models for Application
 - Small models matter!
 - More applications...

Thanks!

Github: https://github.com/OFA-Sys

Huggingface: https://huggingface.co/OFA-Sys

Papers

 OFA: Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence Learning Framework. https://arxiv.org/abs/2202.03052

 Prompt Tuning for Generative Multimodal Pretrained Models. https://arxiv.org/abs/2202.03052