Convolutional K-Nearest Neighbors: An End-to-End
Hybrid Approach

Abstract—This paper presents the use of a hybrid end-to-end
approach to replace the fully connected layers of a Convolutional
Neural Network (CNN) model, and train the hybrid model using
the Neighborhood Component Analysis loss function. This hybrid
model was trained using various standard Machine Learning
data sets such as MNIST Digits, to evaluate the performance
against standard CNN models. Experiments were also conducted
by varying the size of the data sets and using different batch
sizes. Our results and experiments have shown that our hybrid
models are more robust to data set sizes and the convolutional
layers alone can perform just as well as standard CNN models.
Our approach takes a step in producing more explainable hybrid
Deep Neural Network models.

Index Terms—Convolutional Neural Networks, K-Nearest
Neighbors, Explainable Deep Learning, Neighborhood Compo-
nent Analysis, Hybrid Methods,

I. INTRODUCTION

A growing problem in Artificial Intelligence (Al) and Ma-
chine Learning (ML) is the inability to explain or fully un-
derstand the reasons by which state-of-the-art ML algorithms
perform as well as they do [1]. We constantly see AI/ML
researchers attempting to outperform these algorithms but at
the cost of adding further complexity to the models. In the
past decade, we have seen the rise of Deep Neural Networks
(DNN5s) and the incredible feats they have accomplished in the
sub-fields of AI such as Computer Vision (CV) and Natural
Language Processing (NLP). DNNs are considered black-box
or opaque methods due to their complex interactions and non-
linear activations. This is also what allows DNNs to have
the flexibility to learn complex functions that classical ML
algorithms struggle to learn [1]. However, interpreting and
explaining their learned function and results is a big problem
that Al researchers still struggle to accomplish.

Convolutional Neural Networks (CNNs) have helped in-
crease the popularity of CV and have accelerated methods such
as object detection and classification in remarkable ways. They
consist of convolutional layers, that mimic the visual cortex,
to learn feature embeddings from images. CNNs are usually
paired with fully connected or dense layers to learn a metric
function using the features embeddings from the images.

Methods such as Grad-CAM aim to provide a visualization
technique of explainability for the convolutional layers of the
CNN; we are still left trying to understand the dense layers.
This is done by calculating heat maps of the activations in
the convolutional layer which highlight the important regions
the CNN looks at to make its final prediction. Though this
provides a visualization technique for the explainability for

the convolutional layers of a CNN, we are still left with the
opaque portion of the dense layers.

Methods such as model simplification have been proposed
to provide explainability in dense models. But techniques
such as these increase in complexity as the number of layers
increase [1]. We see models such as AlexNet, VGG16, and
VGG19 perform well in various settings. But most of the
trainable parameters in these models are located in the dense
layers of the model and simplifying these layers could result
in decreased performance.

Hybrid methods pairing opaque models with transparent
models have increasingly become a topic of research. Methods
such as these usually pair a trained CNN with a transparent
model such as a decision tree or K-Nearest Neighbors (KNN)
classifier and thus are necessarily done post-hoc. Though these
methods add explainability to CNNs, the use of the dense
layers are still present during training time and still influence
the black-box nature of the model.

In this paper, we propose a hybrid end-to-end approach that
omits the use of the fully connected layers of a CNN and train
the convolutional layers alone with a KNN inspired Neighbor-
hood Component Analysis (NCA) loss function. Furthermore
during test time, we use a KNN classifier in place of the fully
connected layers. We propose that our models perform just
as well with the convolutional layers alone and therefore with
less trainable parameters. We also propose our hybrid model
is robust to smaller data sets and less prone to overfitting.
Our goal is to remove a portion of the black-box nature of
CNNs by eliminating the dependency of the dense layers for
classification.

The remainder of this paper is outlined a follows. In Section
IT we discuss related work on the use of hybrid methods and
the use of the NCA loss function. Section III, we explain
our use of the NCA loss and also formulate and explain a
few research questions to explore. In Section IV, we give
descriptions of the model architectures and data sets used, as
well as a detailed explanation of our experiments. Section V
showcases results from the experiments. In Section VI, we
answer the research questions brought up in Section II, using
results from the experiments. Lastly, we conclude this paper in
Section VII and give some insight into future work we would
like to explore.

II. RELATED WORK

For a model to be explainable, it needs to have two
characteristics; explainability and interpretability. [1] were the
first to formulate a proper definition of explainable models.



Explainability is the details and reasons a model gives to
make its functioning understandable to a certain audience.
Interpretability is the level at which a given model makes
sense for a human observer. Interpretability, also known as
transparency, is a passive characteristic which comes from
the design of the model itself. Explainability is an active
characteristic which is done post-hoc.

Though CNNs cannot have interpretability by design, we
seek the use of hybrid methods that pair transparent models
with opaque models to add explainability. In our case, we pair
CNNs with a KNN classifier by omitting the fully connected
layers. Most hybrid methods are implemented post training, we
seek to train the convolutional layers with the KNN selection
rule to further aid the performance of the KNN classifier
during inference time. One problem with training a CNN
with a KNN classifier is that the KNN selection rule is not
differentiable. Thus we seek a loss function that is similar to
the KNN selection rule to be able to train our hybrid models.

Neighborhood Component Analysis (NCA) is usually an
unsupervised dimensionality reduction technique for data sets
with high complexity. [3]’s method learns a quadratic distance
metric which optimizes the Leave-One-Out classification error
on the training set. [3] introduce a differentiable cost function
based on stochastic neighbor assignments in a transformed
space that seeks to maximize the expected number of points
correctly classified.

Just like [3], [15] propose a differentiable relaxation of the
KNN selection rule by interpreting the KNN rule as the limit
distribution of k categorical distributions. [15] then replace the
one-hot encoded label vector in stochastic nearest neighbors
with their continuous expectations. This yields a continuous
and deterministic relaxation that converges to the hard KNN
selection rule.

[16] took the NCA algorithm further by adopting it as a
supervised loss function for their CNNs by taking advantage
that the NCA loss is a special case of the Contrastive loss
function. They seek to train their CNNs with the NCA loss
in order to learn feature embeddings that perform well for
the KNN. However, [16] did not omit the use of the fully
connected layers and trained the entire CNN with the NCA
loss function. Furthermore, they evaluate their model by taking
the results of the output layer of the CNN and passing it to
a K-Nearest Neighbor model. Their method was able to out
perform their baseline models trained using the Cross Entropy
loss function.

[9] takes a post-hoc approach to improve the explainability
of DNNs by replacing the output layer of a DNN with a KNN
classifier to produce both a predicted label and an explana-
tion to its prediction. The explainability of the new hybrid
DNN-+KNN comes from the inherent transparency of the KNN
and the simplicity of the nearest neighbor assumption.

[14] takes on a post-hoc approach as well, by evaluating a
trained DNN with a KNN classifier at each layer. They identify
patterns in the output of each layer and compare them to those
found during training to ensure that the prediction made is
supported by the training data.

III. BACKGROUND
A. NCA Loss

Distance Matrix: We begin by transforming a batch of N
input samples into a feature space, by passing them through the
convolutional layers of the CNN. As a result of the flattening
layer, an N x M matrix is formed where M is the number
of features calculated by the CNN. This feature matrix is then
used to calculate the pairwise Euclidean distance between each
feature vector in the batch to produce a distance matrix D.

Probability Matrix: Following [3], a softmax over the
distance matrix D is used to produce an N x N probability
matrix P, where each row represents the probability p;; such
that, sample X; selects sample X; as a nearest neighbor and
thus having a similar class label. The actual Leave-One-Out
classification error of the KNN and NCA comes from setting
the diagonals p;; of the probability matrix P to zero, i.e.
removing the probability that sample X; selects itself as a
nearest neighbor [3].

Bit Matrix: With the construction of the probability matrix
P, we then proceed to produce a bit matrix B. We begin by
one-hot encoding the class labels for each sample in the batch
to produce an N x C matrix L, where N is the total number
of samples in the batch and C'is the number of class labels in
the data set. We take on a one vs all approach for multi-class
classification. To calculate the bit matrix B, we simply do a
matrix multiplication with L and its transpose (B = LLT),
where each row in matrix B represent a bit vector for sample
X; such that a bit is turned on if X;’s class label is equal to
X;’s class label, i.e. L; - L; = 1.

Loss Calculation:
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Having calculated the probability matrix P and the bit ma-
trix B, we have the necessary tools to calculate the NCA Loss
as seen in equation (1). In optimizing the NCA loss function,
we maximize the probability p; denoting the probability that
sample X; is correctly classified [3].

As mentioned before, we omit the use of the dense layers in
a CNN and only train the convolutional layers. This approach
in training just the convolutional layers is inspired by [6] in
which their models lack the use of fully connected layers
and [10] in which they instead add fully connected convo-
lutional layers in between convolutional layers. In contrast,
we propose a simple method that uses standard convolutional,
batch normalization, dropout, or pooling layers.

B. Research Questions

In this section we explain a few research questions we think

are important to explore.

1) Can we eliminate the fully connected (dense) layers?
Fully connected layers add complexity to the model.
These layers increase the performance of DNNs but at
the cost of lower model interpretability [1]. To explore
this question, we cut out the fully connected layers of
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CNNs and feed the features calculated by the convolu-
tional layers directly to the NCA loss function during
the training process. During the inference process, we
feed the new sample into the convolutional layers and
feed the outputting features from the CNN to a KNN
classifier. The KNN classifier uses features learned from
the training set to predict a label for the testing sample.
We look to see if this hybrid approach performs as well
as a CNN with dense layers.

How much learning can we do in the convolutional
layers?

Convolutional layers learn kernels that are specific to
the prediction problem at hand. These kernels are used
to map an image to a feature space by producing
feature maps, which provide insight into the internal
representation for an image. Learning is typically over
for a CNN when the loss function used is optimized.
Since standard CNNs consist of convolutional (feature
learning) and dense (metric learning) layers, parameters
in both areas aid in the learning of the model. We seek
to explore the amount of learning convolutional layers
can achieve by training the convolutional layers alone.
We then will train a standard CNN counterpart model
that consist of the same convolutional layers but with
added dense and output layer. We will use this as our
baseline to our performance and compare the result of
our hybrid models.

How does the training data set size affect learning?
A rule of thumb in neural-based ML is to use large
data sets. This allows for the ML model to train its
parameters to perform well to the classification problem.
Typical classification image data sets consist of 50,000+
training images. We explore this problem by training
hybrid and standard CNN models using subsets of the
MNIST Digits and Fashion data sets to learn a binary
classification problem. We also take it a step further by
using the Horses or Humans data set and compare the
result to the standard CNN model.

Can we use non-linear activation functions in the
convolutional layers to increase learning?

Activation functions are regarded as essential hyperpa-
rameters for CNNs. They drastically influence the over-
all performance of models by handling linear and non-
linear data classifications alike [20] [12]. Determining
the appropriate activation function for a given model
is a trial and error process. To answer this question,
we can examine comparisons of popular non-linear
functions and their influence on network learning. We
make these comparisons by utilizing a high-performing
deep CNN and swapping the activation functions. We
will implement a non-bias dense layer to accurately
measure convolutional-learning.

IV. METHODOLOGY
A. Architecture

Our objective is to remove the dependency of the densely
connected layers in CNNs. Architectures of our hybrid Conv-
KNN models can be seen in Tables I and II. Tables III and
IV show the baseline architectures we compared our hybrid
models against. These architectures were chosen from [4]
and [5] whom were able to create models that performed well
on the data sets used in our experiments.

B. Data Sets

The data sets used are shown in Table V along with their
respective training and testing size. We chose these data sets
to test our method on simple and standard problems.

Modified National Institute of Standards and Technology
(MNIST) Digits is a dataset of handwritten digits with training
set size of 60,000 images and a testing set size of 10,000
images [8]. The MNIST Digits dataset is a fairly simple
benchmark that has become a standard in the ML community
to validate models.

The MNIST Fashion dataset increases the difficulty by
replacing the images of hand written digits with images of
clothing items [19]. MNIST Fashion aims to be a data set that
represents a more modern CV task [19].

The Street View House Numbers (SVHN) is a another
dataset in the style of MNIST Digits, but it presents a signifi-
cantly more difficult and real-world problem by using snippets
of house numbers from Google Street View images [13].
SVHN is a larger dataset than MNIST Digits and Fashion
and the images are in color rather than greyscale.

Horses or Humans is a small data set consisting of 500
rendered images of various species of horses in various poses
in multiple locations [11]. The data set also includes 527
rendered images of male and female humans of various diverse
backgrounds and races presented in the training set. [11].
Images in this dataset are also larger compared to the other
data sets used, with color images of size 300 x 300.

Lastly, we used the Canadian Institute For Advanced
Research-10 (CIFAR-10) dataset which consists of 60,000
color images with ten mutually exclusive classes [7]. CIFAR-
10 is a significantly more complex dataset and it is widely
used as a benchmark for CV algorithms.

C. Experiments

Before starting the training and testing process, we begin by
normalizing the pixel values of the images in the data sets. This
is done to ensure we have stability when performing floating
point operations.

1) Training Process: The training process of our hybrid
model is similar to that of a standard DNN in that we do a
forward pass of a batch of inputs through the layers of the
network. Again, since we are omitting the use of the dense
layers, our models include convolutional layers and end with
a flattening layer as the output layer. We perform Pooling and
Batch Normalization but don’t use Drop Out layers in our
hybrid models. We feed the output features directly to the



TABLE I

OUR ARCHITECTURE FOR MNIST DIGITS, FASHION, AND SVHN DATA SETS [4]

Layer Number of Kernels | Kernel Size | Stride | Padding
Convolution 32 (5 xb) (1, 1) None
Convolution 32 (5 x b) (1, 1) None

Batch Normalization
Max Pooling 2x2) 2, 2) None
Convolution 64 3 x3) (1, 1) None
Convolution 64 3 x3) (1, 1) None
Max Pooling 2x2) 2, 2) None
Flattening
TABLE II
OUR ARCHITECTURE FOR CIFAR-10 DATA SET [5]

Layer Number of Kernels | Kernel Size | Stride | Padding
Convolution 96 (5 X b) (1, 1) Same
Convolution 80 (5 x b) (1, 1) Same
Max Pooling 2x2) 2,2 None
Convolution 96 (5 X b) (1, 1) Same
Convolution 64 3 x3) (1, 1) Same
Max Pooling 2x2) 2,2) None

Flattening
TABLE III
BASELINE ARCHITECTURE FOR MNIST DIGITS, FASHION, AND SVHN DATA SETS [4]

Layer Number of Kernels | Kernel Size | Stride | Padding
Convolution 32 (5 %xb) (1, 1) None
Convolution 32 (5 xb) (1, 1) None

Batch Normalization
Max Pooling (2 x2) 2,2) None
Convolution 64 3 x3) (1, 1) None
Convolution 64 3 x3) (1, 1) None
Max Pooling (2 x2) 2,2) None
Flattening

Dense 256

Dense 128

Dense 84

Dense 10

TABLE IV
BASELINE ARCHITECTURE FOR CIFAR-10 DATA SET [5]

Layer Number of Kernels | Kernel Size | Stride | Padding
Convolution 96 (5 X b) (1, 1) Same
Convolution 80 (5 x b) (1, 1) Same
Max Pooling 2x2) 2,2) None
Convolution 96 (5 X% b) (1, 1) Same
Convolution 64 3 x3) (1, 1 Same
Max Pooling 2x2) 2,2) None

Flattening
Dense 256
Dense 10

NCA loss function to predict and calculate the training error.
We then use the Stochastic Gradient Descent (SGD) algorithm
as our optimizer to update the parameters with respect to the
NCA loss.

Since the NCA loss is dependent on the batch size, we
discovered to use a batch size B >= 2C, where C is the
number of classes in the data set. We found this to be the
minimum batch size for our experiments in order to increase
the chances that each sample in the batch can be paired with
another sample of the same class, i.e. each sample can have a

nearest neighbor.

Our hybrid model uses the Rectified Linear Unit (ReLU)
activation function; any activation function can be used. It is
important to note that our implementation of the NCA loss
uses the Euclidean Distance to calculate the distance between
two feature vectors. We found that ReLU and ReLU like
activation functions would result in large distances between
feature vectors. Due to the exponential function in the Soft-
max, this would result in dividing by zero and thus lead to
underflow.



To avoid running into the chance of dividing by zero, we
clip the values to a minimum threshold of ¢ = 107!2 for any
probability p;; in the Softmax cover. Note that the diagonals
are still set to zero to include the Leave-One-Out classification
error.

2) Testing Process: For our hybrid approach, we evaluate
the trained model with a standard KNN algorithm. In order to
predict a label for new samples, we use the features from the
training set to compute a distance to the new sample.

To implement the algorithm, we pass the new sample
through the CNN and receive a feature vector from the
flattening layer. We then iterate through the training set and use
the feature vectors of the training set to calculate the Euclidean
distance to the new sample. Next we sort the distance values
from smallest to largest and find the K nearest neighbors to
the new sample and use the KNN voting method to select a
label for the new sample.

In order to speed up inference time when using large data
sets, we opted to use a subset of the training set with balanced
classes. We randomly sample from the training set until we
reach a bin size of b for each of the C classes. We found this
to be the most efficient way to reduce inference time while
maintaining performance.

3) Varying The Training Data Set Size: Our approach to
evaluate the models in these experiments was different than
the one explained above. For these experiments, we went with
a K = 1 nearest neighbor approach, varied the size of each
data set, and used only two classes from the the MNIST Digits
and Fashion data sets for binary classification. Training set
sizes used for these experiments can be seen in Table VI.

First we train with the full training set size, then we train the
models with half the dataset. This is then followed by training
the models using only 160 samples from the training set. For
the MNIST Digits and Fashion data sets, we use batch sizes
of 1024, 512, and 32 images for each training set size. For the
Horses or Humans data set we use batch sizes of 64, 32, and
16 images. The testing set also follows the same scheme as
the training set size except the last testing set size is only 15
samples. This was done to evaluate the performance of both
the hybrid models and the baseline models when the training
size decreases.

4) Non-Linear Orientation: We have selected two model
location variation where we will implement non-linear ac-
tivation functions called Iterative and Post. Iterative utilizes
activation functions inside the second convolutional layer in
each convolutional block. Post utilizes activation functions
after each batch normalization. These locations were decide
upon due to previous work done in activation function com-
parisons [2]. With these two activation locations declared, we
can implement more variations of models with a combination
of these locations to measure the overall feature learning from
the convolutional layers. We selected the sigmoid, tanh, and
ReLU activation functions strictly for their standard use in
DNNs. The Cross Entropy (CE) loss function was used to
train the Non-Bias models in this experiment.

TABLE V
MULTI-CLASS DATA SETS USED

Test Size
10,000
10,000
26,032
10,000

Train Size
60,000
60,000
73,257
50,000

Data Set
MNIST Digits
MNIST Fashion
SVHN
CIFAR-10

TABLE VI
BINARY DATA SETS USED

Data Set
MNIST Digits (0s and 1s)
MNIST Fashion (0Os and 1s
Horses or Humans

Test Size
2,115
2,000

256

Train Size
12,665
12,000
1,027

V. RESULTS
A. Multi-Class Classification Experiments

We trained a model for each of the four data sets with their
respective architectures as seen in Tables I and II. We trained
each model using batch sizes of 32, 64, 128, and 256], started
with a learning rate of 7 = 10~ and decreased it by a factor
of 10~! when the model was stuck at a local minima. We set
a maximum of five learning rate decreases before the training
process would be stopped.

As mentioned before, to decrease the inference time while
maintaining performance, we randomly sampled the training
set to a subset of 10,000 samples of equally sized bins.
Furthermore we used a batch of testing samples to reduce the
inference time. A opted to use a value of K = /10,000 = 100
for the KNN classifier.

We compared our hybrid end-to-end model results with their
baseline counter parts that included the densely connected
layers. The baseline architectures can be seen in Tables III and
IV, all the baseline models were individually trained using the
same data set, learning rates, batch sizes, and SGD optimizer.
Each baseline model was trained using the CE loss function.

Tables VII-X show the results of our experiments, pairing
our hybrid end-to-end model with their baseline counterparts.

With MNIST Digits being a relatively simple problem, the
performance of our model was neck to neck with its baseline
counterpart. We can see in Table VII that both our hybrid
model and the baseline model were able to achieve a testing
accuracy of over 99% in all four trials. More importantly,
our method was able to reduce overfitting compared to the
baseline. We based this by subtracting the testing accuracy
from the final training accuracy. As we can see in Table VII,
our hybrid model had a higher testing accuracy than its final
training accuracy; the baseline overfitted by a small amount.

With MNIST Fashion dataset being a more complicated
problem than MNIST Digits, we see both our hybrid model
and its baseline counterpart overfitting the training set. As seen
in Table VIII, with a batch size of 32, we see our hybrid model
having a train and test accuracy of 91.43%. In the other trials
we are still overfitting less than the baseline.

In Table IX we see the results of of our hybrid model and
the baseline model trained on the SVHN data set. We see that



TABLE VII
CONV-KNN vs BASELINE (MNIST DIGITS)

Conv-KNN Baseline
Batch Size Train Test Difference Train Test Difference
32 95.71% 99.44% -3.71% 99.65% 99.32% 0.33%
64 99.14% 99.31% -0.17% 99.69% 99.41% 0.28%
128 99.18% 99.29% -0.11% 99.71% 99.21% 0.50%
256 98.85% 99.14% -0.29% 99.74% 99.13% 0.61%
Number of Parameters 81,952 274,246
TABLE VIII
CoONV-KNN vs BASELINE (MNIST FASHION)
Conv-KNN Baseline
Batch Size Train Test Difference Train Test Difference
32 91.43% 91.43% 0.00% 99.50% 90.96% 8.54%
64 94.34% 90.73% 3.61% 99.76% 90.37% 9.39%
128 95.56% 89.86% 5.70% 99.74% 90.25% 9.49%
256 90.63% 89.13% 1.50% 99.91% 89.38% 10.53%
Number of Parameters 81,952 274,246
TABLE IX
CONV-KNN vs BASELINE (SVHN)
Conv-KNN Baseline
Batch Size Train Test Difference Train Test Difference
32 84.98% 93.52% -8.54% 99.93% 92.41% 7.52%
64 91.32% 93.35% -2.03% 99.83% 91.55% 8.28%
128 92.03% 92.95% -0.92% 99.91% 90.77% 9.14%
256 90.41% 91.97% -1.56% 90.48% 88.17% 2.31%
Number of Parameters 83,552 390,534
TABLE X
CONV-KNN vs BASELINE (CIFAR-10)
Conv-KNN Baseline
Batch Size Train Test Difference Train Test Difference
32 93.50% 80.30% 13.20% 99.86% 75.90% 23.96%
64 96.78% 79.49% 17.29% 99.95% 75.70% 24.25%
128 96.72% 78.18% 18.54% 99.98% 75.59% 27.39%
256 81.34% 75.36% 5.98% 99.97% 70.57% 29.40%
Number of Parameters 446,832 1,498,234
the hybrid model significantly overfits less than the baseline TABLE XI
model. Following the same trend as when trained with the DATA SET SIZE VARIATION (MNIST DIGITS)
Ot.her data Set’. the hybrid mod.el has a.hlgher' teSt. accuracy Train Size | Batch Size | Conv-KNN Accuracy | Baseline Accuracy
with a batch size of 32. What is most interesting is that the 12665 1024 99.93% 99.34%
hybrid model performs better when trained on the SVHN data 6136302 iggi gg-gé? ggg‘l‘go
. . (4 . 0
s<?t. We can see that the hybrid rpodel has. the lowest accuracy 12665 s12 99.88% 99.61%
differences for this data set than it does with the others. SVHN 6332 512 99.86% 99.33%
is suppose to be a more complex data set than MNIST Digits 1 éggS 53122 33-223 gééi?
. 0 . (2
but the model overfits less on the SVHN data set overall. 6332 3 99.60% 99.49%
CIFAR-10 is the most complicated dataset we used since it 160 32 99.65% 97.50%

consists of images of real objects in different settings. We can
see in Table X that our model outperforms the baseline in every
trial. We have been able to reduce overfitting significantly as
well with the best trial being the model having a batch size of
256. As we can see, the hybrid model only overfits by 5.98%
while the baseline overfits by 29.40%.

It’s evident that overfitting will become a problem as the
data sets become more complicated, but we aim to reduce
overfitting by reducing the number the trainable parameters.

As seen in Tables VII-X, our hybrid models have less than half
the number of trainable parameters than the baseline models.
We can see that the fully connected layers account for most of
the trainable parameters. We argue that we can eliminate the
fully connected layers since our hybrid models perform just
as well and at times better than the baseline models.



TABLE XII
DATA SET SI1ZE VARIATION (MNIST FASHION)

Train Size | Batch Size | Conv-KNN Accuracy | Baseline Accuracy
12000 1024 96.16% 94.69%
6000 1024 96.50% 92.90%

160 1024 92.87% 84.86%
12000 512 96.72% 96.22%
6000 512 96.81% 95.26%

160 512 92.70% 83.33%
12000 32 88.22% 96.86%
6000 32 88.51% 95.51%

160 32 91.02% 78.38%

TABLE XIII

DATA SET SIZE VARIATION (HORSES OR HUMANS)

Train Size | Batch Size | Conv-KNN Accuracy | Baseline Accuracy
1027 64 95.35% 87.73%
513 64 95.98% 73.09%
160 64 96.05% 50.00%
1027 32 92.89% 90.55%
513 32 94.26% 75.86%
160 32 94.65% 50.00%
1027 16 88.24% 89.41%
513 16 90.27% 82.11%
160 16 91.29% 50.00%

B. Varying The Training Data Set Size

Results for our small data set experiments can be seen in
Tables XI-XIII. Note we went with a binary classification
approach in these experiments and use classes 0 and 1 of the
MNIST Digits and Fashion data sets.

Again, since MNIST Digits is a simple problem, the dif-
ferences in accuracy between the models is fairly small.
Our hybrid model was still able to outperform its baseline
counterpart by 0.29% when comparing their highest accuracy.
We can see that the baseline’s accuracy begins to decline as
the number of training samples decreases. As for our hybrid
model, there is relatively no change in accuracy.

We begin to observe a larger difference between our hybrid
model and its baseline counterpart when using the MNIST
Fashion data set. When comparing the highest accuracies
achieved, our hybrid model was still able to outperform the
baseline by 0.44% and never falling below 88.00%. On the
contrary, the baseline’s lowest accuracy fell to 78.38% with a
batch size of 32 and a training set size of 160.

We begin to see a sharper decline in accuracy by the
baseline model when using the Horses or Humans dataset.
The baseline model achieves a maximum accuracy of 90.55%
with a train set size of 1,027 and batch size of 32. It achieves
a minimum accuracy of 50.00% with a train set size of 160.
Our hybrid model achieves a maximum accuracy of 99.49%
and a minimum accuracy of 86.44% with train set size and
batch size of 1027 & 16 and 1027 & 64 respectively.

From these results we can see that our hybrid models are
more robust to the size of the training data set.

C. Non-Linear Orientation

The architecture of the Non-Bias CNN model used in these
experiments can be seen in Table XIV. The architecture of

this model is similar to the CNN in [4], but the complexity
is minimized by the reduction in dense layers. We utilize ar-
chitecture closely resembling [4] because we need an accurate
modern baseline model to compare against our convolutional-
only learning results. It is also one of the most optimized and
high performing CNN for our data set.

Table XV shows the results of our activation function com-
parison experiments. Besides Iterative and Post, we compared
against a single activation function and no activation function
orientations. As mentioned above with MNIST Digits being a
simple problem, we are still able to yield strong results with
differing orientations. It is apparent that orientation does not
influence a higher model evaluation. Furthermore, we notice
that None yields comparable evaluation percentage to that of
the activation functions

VI. DISCUSSION & FUTURE WORK
A. Can we eliminate the fully connected (dense) layers?

Our goal is to remove a portion of the black-box nature
of CNNs by eliminating the use of the dense layers for
classification. As seen in our results, our Convolutional-KNN
hybrid approach was able to perform just as well and at times
outperform the baseline CNN models. The trade off between
interpretability and performance is seen in both the Digits and
Fashion data sets by a small amount. To our surprise, the
trade off is not seen in our SVHN experiment with our hybrid
model performing better than the regular CNN model. When
trained on four data sets, we can see that the dense layers
could account for most of the overfitting done by the model.

From our results we can safely argue that when it comes to
these classification problems, we can exclude the use of the
fully connected layers in CNNs. Our models achieved a higher
testing accuracy and also had less overfitting as opposed to the
baseline models. Further work needs to be done using larger
data sets and more complex classification problems to give a
complete answer.

B. How much learning can we do in the convolutional
layers?

In our experiments, we take on a hybrid end-to-end ap-
proach of training CNNs by omitting the use of the dense
layers. By optimizing the NCA loss function, we exhaust the
tuning of the kernels of each convolutional layer in the hybrid
model. Therefore we say that we exhaust the learning of the
convolutional layers for that particular model. In all instances,
the convolutional layers alone (hybrid model) have a lower
training accuracy than the standard CNN (baseline). However,
when evaluating the hybrid model with a KNN classifier, we
achieved testing accuracies higher than the standard CNN in
most cases.

The amount of learning a DNN is depends on the task at
hand and the loss function we seek to minimize. We can see
from our experiments that the convolutional layers trained with
the NCA loss function can learn just as much as the baseline
models trained with a CE loss function. To give a complete



TABLE XIV
ARCHITECTURE FOR NON-BIAS CNN

Layer Number of Kernels | Kernel Size | Stride | Padding
Convolution 32 (5 %x5) (1,1) None
Convolution 32 (5 x 5) (1,1) None

Batch Normalization
Max Pooling (2 x2) 2,2) None
Dropout
Convolution 64 3 x3) (1,1) None
Convolution 64 3 x3) (1,1) None
Batch Normalization
Max Pooling (2 x2) 2,2) None
Dropout
Flatten
Dense 10

TABLE XV
ACTIVATION FUNCTION COMPARISON

Activation 1-Final 2-Iterative 2-Post 4-Tterative
Function Layer Batch and Post
ReLU 98.56% 99.26% 98.69% 99.08%
Tanh 97.83% 98.07% 98.47% 98.82%
Sigmoid 97.96% 98.48% 92.94% 96.53%
None 98.25%

answer, we would still need to test our hybrid method using
various architectures.

C. How does the training data set size affect learning?

To explore this question, we used subsets of the MNIST
Digits and Fashion data sets along with the Horses or Humans
data set. We reduced the Digits and Fashion data sets to only
two classes (0 and 1) which in return reduced the size to
12,000 images for the training sets. Furthermore, we shrunk
the number of images in each data set to half for other trials
and went to as low as 160 images for the training set. We also
varied the testing set size in a similar fashion.

We saw a decline in testing accuracy from the standard CNN
models but our hybrid models were able to be consistent as the
set sizes varied. From these results we can conclude that our
hybrid method is robust to the data set size. This could be as a
result of the NCA loss function which seeks to maximize the
expected number of points correctly classified. Further work
would need to be done using multi-class classification as well
as data sets that are designed to be smaller.

D. Can we use non-linear activation functions in the con-
volutional layers to increase learning?

Activation functions are widely considered an essential part
of most modern day neural nets and can largely influence the
performance of the model [12]. As we try to answer our above
question, it is important to note that although our experiments
show that non-linear activation functions do not demonstrate
a significant increase in learning, the experiments were done
on a fairly simple data set with only three activation function
comparisons. For this question to be fully answered, we must
examine a larger variety of non-linear activation functions and
their evaluation in respect to orientation as well as using more

complex data sets [2]. Furthermore, it may be necessary to
experiment with different model architectures.

VII. CONCLUSION

In this paper, a Hybrid End-to-End Convolutional K-Nearest
Neighbors model has been proposed by replacing the fully
connected layers with a KNN classifier. The convolutional
layers were trained alone using the Neighborhood Component
Analysis loss function to learn feature embeddings that will
further aid the KNN classifier.

Our results show that our approach produces hybrid models
that are robust to data set sizes and perform just as well and
at times outperform the standard CNN models. Our models
are more transparent than standard CNNs and, with post-hoc
techniques, can provide more explainability. We have shown
that we can eliminate the fully connected layers in CNNs and
begin to use transparent methods and loss functions to train
the convolutional layers alone.

By removing a portion of the inherent black-box nature of
DNNs, we hope our hybrid approach could help promote trust
in using hybrid DNN methods for real-world problems outside
of the research world.

VIII. FUTURE WORK

To further explore our research questions we aim to use
several well known deeper architectures like VGG-16 and train
them with our hybrid approach. We would also like to use
large data sets such as ImageNet to increase the complexity
of the learning process as well as smaller data sets to evaluate
the amount of learning the convolutional layers can learn. We
also reserve the use of Grad-CAM for future testing to further
compare the kernels of the convolutional layers trained with
our approach.
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